Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Lung Cancer ; 184: 107342, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573705

RESUMO

BACKGROUND: Radical resection of isolated lung metastases (LM) from colorectal cancer (CRC) is debated. Like Fong's criteria in liver metastases, our study was meant to assign a clinical prognostic score in patients with LM from CRC, aiming for better surgery selection. METHODS: We retrospectively analyzed data from 260 CRC patients who underwent curative LM resection from December 2002 to January 2022, verifying the impact of different clinicopathological features on the overall survival (OS). RESULTS: At the univariate analysis: higher baseline CEA levels (p = 0.0001), disease-free survival less than or equal to 12 months (m) (p = 0.0043), LM size larger than 2 cm (p = 0.0187), multiple resectable nodules (p = 0.0083), and positive nodal status of the primary tumor (p = 0.0011) were associated with worse prognosis. In a Cox regression model, these characteristics retained their independent role for OS (p < 0.0001) and were chosen as criteria to be assigned one point each for clinical risk score. The 5-year survival rate in patients with 0 points was 88%, while no patients with a 5-point score survived at 2 years. Based on the 0-1 vs. 2-5 score range, we obtained a significant difference in median OS: not reached vs. 40.8 months (95 %CI 36 to 87.5), respectively (p < 0.0001) stratifying patients into good and poor prognosis. The prognostic role of the score was also confirmed in terms of median RFS: not reached in 0-1 scored patients vs. 30.5 months (95 %CI 19.4 to 42) in patients with 2-5 scores (p = 0.0006). CONCLUSIONS: When LM from CRC is resectable, the Meta-Lung Score provides valuable prognostic information. Indeed, while upfront surgery should be considered in patients with scores of 0 to 1, it should be cautiously suggested in patients with scores of 2 to 5, for whom a prognosis comparison between preventive surgery and other treatments should be investigated in prospective randomized clinical trials.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Pulmonares , Metastasectomia , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Estudos Prospectivos , Prognóstico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Pulmão/patologia , Taxa de Sobrevida
2.
FEBS Lett ; 597(15): 1921-1927, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487655

RESUMO

The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Europa (Continente)
3.
J Org Chem ; 88(13): 9105-9122, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276453

RESUMO

Studies suggest that the 1'ß-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'ß-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 µM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 µM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.


Assuntos
Alanina , Nucleotídeos , Monofosfato de Adenosina , Oxidiazóis/farmacologia , Oxidiazóis/química
4.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36388765

RESUMO

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

5.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35766385

RESUMO

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Depsipeptídeos , Humanos , Pandemias , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
6.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709707

RESUMO

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , COVID-19/metabolismo , Redes e Vias Metabólicas/genética , Pandemias , SARS-CoV-2/fisiologia , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Animais , COVID-19/virologia , Células CACO-2 , Chlorocebus aethiops , Conjuntos de Dados como Assunto , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno , Humanos , RNA Interferente Pequeno , Análise de Sequência de RNA , Células Vero , Tratamento Farmacológico da COVID-19
7.
Mod Pathol ; 34(11): 2009-2019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34155350

RESUMO

Dedifferentiation and transdifferentiation are rare and only poorly understood phenomena in cutaneous melanoma. To study this disease more comprehensively we have retrieved 11 primary cutaneous melanomas from our pathology archives showing biphasic features characterized by a conventional melanoma and additional areas of de-/trans-differentiation as defined by a lack of immunohistochemical expression of all conventional melanocytic markers (S-100 protein, SOX10, Melan-A, and HMB-45). The clinical, histologic, and immunohistochemical findings were recorded and follow-up was obtained. The patients were mostly elderly (median: 81 years; range: 42-86 years) without significant gender predilection, and the sun-exposed skin of the head and neck area was most commonly affected. The tumors were deeply invasive with a mean depth of 7 mm (range: 4-80 mm). The dedifferentiated component showed atypical fibroxanthoma-like features in the majority of cases (7), while additional rhabdomyosarcomatous and epithelial transdifferentiation was noted histologically and/or immunohistochemically in two tumors each. The background conventional melanoma component was of desmoplastic (4), superficial spreading (3), nodular (2), lentigo maligna (1), or spindle cell (1) types. For the seven patients with available follow-up data (median follow-up period of 25 months; range: 8-36 months), two died from their disease, and three developed metastases. Next-generation sequencing of the cohort revealed somatic mutations of established melanoma drivers including mainly NF1 mutations (5) in the conventional component, which was also detected in the corresponding de-/trans-differentiated component. In summary, the diagnosis of primary cutaneous de-/trans-differentiated melanoma is challenging and depends on the morphologic identification of conventional melanoma. Molecular analysis is diagnostically helpful as the mutated gene profile is shared between the conventional and de-/trans-differentiated components. Importantly, de-/trans-differentiation does not appear to confer a more aggressive behavior.


Assuntos
Genômica , Melanoma/patologia , Neurofibromina 1/genética , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , DNA de Neoplasias/genética , Diagnóstico Diferencial , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
8.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784499

RESUMO

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Dano ao DNA , Isoxazóis/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/metabolismo , COVID-19/patologia , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Células Vero
9.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
11.
Cell Rep ; 34(2): 108628, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440148

RESUMO

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.


Assuntos
Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/fisiologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/genética , Interferons/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Replicação Viral
12.
J Thorac Dis ; 12(9): 4717-4730, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33145045

RESUMO

BACKGROUND: Surgical lung biopsy for interstitial lung disease (ILD) is traditionally performed through video-assisted thoracic surgery (VATS) and general anesthesia (GA). The mortality and morbidity rates associated with this procedure are not negligible, especially in patients with significant risk factors and respiratory impairment. Based on these considerations, our center evaluated a safe non-intubated VATS approach for lung biopsy performed in ILD subjects. METHODS: Ninety-nine patients affected by undetermined ILD were enrolled in a retrospective cohort study. In all instances, lung biopsies were performed using a non-intubated VATS technique, in spontaneously breathing patients, with or without intercostal nerve blockage. The primary end-point was the diagnostic yield, while surgical and global operating room times, post-operative length of stay (pLOS), numeric pain rating scale (NPRS) after surgery and early mortality were considered as secondary outcomes. RESULTS: All the procedures were carried out without conversion to GA. The pathological diagnosis was achieved in 97 patients with a diagnostic yield of 98%. The mean operating room length-of-stay and operating time were 73.7 and 42.5 min, respectively. Mean pLOS was 1.3 days with a low readmissions rate (3%). No mortality in the first 30 days due to acute exacerbation of ILD occurred. Both analgesia methods resulted in optimal feasibility with a mean NPRS score of 1.13. CONCLUSIONS: In undetermined ILD patients, surgical lung biopsy with a non-intubated VATS approach and spontaneous ventilation anesthesia appears to be both a practical and safe technique with an excellent diagnostic yield and high level of patient satisfaction.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938003

RESUMO

The contamination of freshwaters by heavy metals represents a great problem, posing a threat for human and environmental health. Cadmium is classified as carcinogen to humans and its mechanism of carcinogenicity includes genotoxic events. In this study a recently developed eco-friendly cellulose-based nanosponge (CNS) was investigated as a candidate in freshwater nano-remediation process. For this purpose, CdCl2 (0.05 mg L-1) contaminated artificial freshwater (AFW) was treated with CNS (1.25 g L-1 for 2 h), and cellular responses were analyzed before and after CNS treatment in Dreissena polymorpha hemocytes. A control group (AFW) and a negative control group (CNS in AFW) were also tested. DNA primary damage was evaluated by Comet assay while chromosomal damage and cell proliferation were assessed by Cytome assay. AFW exposed to CNS did not cause any genotoxic effect in zebra mussel hemocytes. Moreover, DNA damage and cell proliferation induced by Cd(II) turned down to control level after 2 days when CNS were used. A reduction of Cd(II)-induced micronuclei and nuclear abnormalities was also observed. CNS was thus found to be a safe and effective candidate in cadmium remediation process being efficient in metal sequestering, restoring cellular damage exerted by Cd(II) exposure, without altering cellular physiological activity.

14.
Nat Genet ; 52(11): 1189-1197, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989322

RESUMO

Epidemiological studies have identified many environmental agents that appear to significantly increase cancer risk in human populations. By analyzing tumor genomes from mice chronically exposed to 1 of 20 known or suspected human carcinogens, we reveal that most agents do not generate distinct mutational signatures or increase mutation burden, with most mutations, including driver mutations, resulting from tissue-specific endogenous processes. We identify signatures resulting from exposure to cobalt and vinylidene chloride and link distinct human signatures (SBS19 and SBS42) with 1,2,3-trichloropropane, a haloalkane and pollutant of drinking water, and find these and other signatures in human tumor genomes. We define the cross-species genomic landscape of tumors induced by an important compendium of agents with relevance to human health.


Assuntos
Carcinógenos/toxicidade , Mutação , Animais , Carcinogênese/genética , Análise Mutacional de DNA , Poluentes Ambientais/toxicidade , Feminino , Genoma , Humanos , Masculino , Camundongos , Taxa de Mutação , Propano/análogos & derivados , Propano/toxicidade , Especificidade da Espécie
15.
Nat Commun ; 11(1): 4306, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855398

RESUMO

Metastatic melanoma carries a poor prognosis despite modern systemic therapies. Understanding the evolution of the disease could help inform patient management. Through whole-genome sequencing of 13 melanoma metastases sampled at autopsy from a treatment naïve patient and by leveraging the analytical power of multi-sample analyses, we reveal evidence of diversification among metastatic lineages. UV-induced mutations dominate the trunk, whereas APOBEC-associated mutations are found in the branches of the evolutionary tree. Multi-sample analyses from a further seven patients confirmed that lineage diversification was pervasive, representing an important mode of melanoma dissemination. Our analyses demonstrate that joint analysis of cancer cell fraction estimates across multiple metastases can uncover previously unrecognised levels of tumour heterogeneity and highlight the limitations of inferring heterogeneity from a single biopsy.


Assuntos
Evolução Clonal , Heterogeneidade Genética , Melanoma/genética , Neoplasias Cutâneas/genética , Idoso , Biópsia , Análise Mutacional de DNA , Humanos , Masculino , Melanoma/secundário , Estudos Prospectivos , Pele/patologia , Neoplasias Cutâneas/patologia , Sequenciamento Completo do Genoma
16.
Nature ; 586(7827): 113-119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707573

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Linhagem Celular , Inibidores de Cisteína Proteinase/análise , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazonas , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Morfolinas/análise , Morfolinas/farmacologia , Pandemias , Pirimidinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Triazinas/análise , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
bioRxiv ; 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511357

RESUMO

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.

18.
Nat Commun ; 11(1): 394, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959748

RESUMO

Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (56Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles. In mammary tumours, high-energy radiation is associated with induction of focal structural variants, leading to genomic instability and Met amplification. Gamma-radiation is linked to large-scale structural variants and a point mutation signature associated with oxidative stress. The genomic architecture of carcinomas, sarcomas and lymphomas arising in the same animals are significantly different. Our study illustrates the complex interactions between radiation quality, germline Trp53 deficiency and tissue/cell of origin in shaping the genomic landscape of IR-induced tumours.


Assuntos
Carcinogênese/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Neoplasias Induzidas por Radiação/genética , Lesões Experimentais por Radiação/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/genética , Dano ao DNA/efeitos da radiação , Análise Mutacional de DNA , Relação Dose-Resposta à Radiação , Feminino , Amplificação de Genes/efeitos da radiação , Mutação em Linhagem Germinativa , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias Induzidas por Radiação/patologia , Mutação Puntual/efeitos da radiação , Proteínas Proto-Oncogênicas c-met/genética , Lesões Experimentais por Radiação/patologia , Sequenciamento Completo do Genoma
19.
Cells ; 8(6)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216647

RESUMO

Human breast cancer is characterized by a high degree of inter-patients heterogeneity in terms of histology, genomic alterations, gene expression patterns, and metastatic behavior, which deeply influences individual prognosis and treatment response. The main cause of mortality in breast cancer is the therapy-resistant metastatic disease, which sets the priority for novel treatment strategies for these patients. In the present study, we demonstrate that Patient Derived Xenografts (PDXs) that were obtained from metastatic and therapy-resistant breast cancer samples recapitulate the wide spectrum of the disease in terms of histologic subtypes and mutational profiles, as evaluated by whole exome sequencing. We have integrated genomic and transcriptomic data to identify oncogenic and actionable pathways in each PDX. By taking advantage of primary short-term in vitro cultures from PDX tumors, we showed their resistance to standard chemotherapy (Paclitaxel), as seen in the patients. Moreover, we selected targeting drugs and analyzed PDX sensitivity to single agents or to combination of targeted and standard therapy on the basis of PDX-specific genomic or transcriptomic alterations. Our data demonstrate that PDXs represent a suitable model to test new targeting drugs or drug combinations and to prioritize personalized therapeutic regimens for pre-clinal and clinical tests.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Medicina de Precisão/métodos , Animais , Mama/metabolismo , Modelos Animais de Doenças , Feminino , Xenoenxertos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Methods Mol Biol ; 1911: 33-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593616

RESUMO

For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.


Assuntos
Técnicas de Cultura de Células/métodos , Hepacivirus/fisiologia , Hepatite C/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/metabolismo , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Hepatite C/virologia , Humanos , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA