Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Genet ; 143(6): 775-795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874808

RESUMO

NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.


Assuntos
Deleção Cromossômica , Epigênese Genética , Haploinsuficiência , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Feminino , Masculino , Neurofibromina 1/genética , Cromossomos Humanos Par 17/genética , Fenótipo , Criança , Regiões Promotoras Genéticas
2.
Ann Hum Genet ; 88(3): 183-193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38018226

RESUMO

BACKGROUD: Neurofibromatosis type 1 (NF1) is a heterogeneous neurocutaneous disorder. Spinal neurofibromatosis (SNF) is a distinct clinical entity of NF1, characterized by bilateral neurofibromas involving all spinal nerve roots. Although both forms are caused by intragenic heterozygous variants of NF1, missense variants have been associated with SNF, according to a dominant inheritance model causing haploinsufficiency. Most patients carry pathogenic variants in one of the NF1 alleles; nevertheless, patients with both NF1-mutated copies have been described. Interestingly, all NF1 variants carried by the known SNF compound heterozygotes were missense/splicing variants or in-frame insertion-deletions. AIMS: To investigate whether there is a differential expression of NF1 variant alleles in an NF1 compound heterozygous SNF patient possibly contributing to clinical phenotype. MATERIALS & METHODS: We performed an allele-specific expression study, by chip-based digital PCR, in an SNF family carrying two NF1 missense variants. We evaluated the expression levels of the two NF1-mutated alleles both carried by the compound heterozygous SNF patient and his relatives. RESULTS: Both alleles were expressed at comparable levels in the patient and hyper-expressed compared to the wild-type alleles of healthy controls. DISCUSSION: Here we provide new insights into expression studies of NF1-mutated transcripts suggesting that a novel pathogenetic mechanism, caused by gain-of-function variants, could be associated with SNF. CONCLUSIONS: Further studies should be performed in larger cohorts, opening new perspectives in the NF1 pathogenesis comprehension.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Alelos , Fenótipo , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Genes da Neurofibromatose 1
3.
Eur J Hum Genet ; 31(8): 931-938, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217626

RESUMO

Spinal neurofibromatosis (SNF) is a form of neurofibromatosis type 1 (NF1) characterized by bilateral neurofibromas involving all spinal roots. The pathogenic mechanisms determining the SNF form are currently unknown. To verify the presence of genetic variants possibly related to SNF or classic NF1, we studied 106 sporadic NF1 and 75 SNF patients using an NGS panel of 286 genes encoding RAS pathway effectors and neurofibromin interactors and evaluated the expression of syndecans (SDC1, SDC2, SDC3, SDC4), the NF1 3' tertile interactors, by quantitative real-time PCR. We previously identified 75 and 106 NF1 variants in SNF and NF1 cohorts, respectively. The analysis of the distribution of pathogenic NF1 variants in the three NF1 tertiles showed a significantly higher prevalence of NF1 3' tertile mutations in SNF than in the NF1 cohort. We hypothesized a potential pathogenic significance of the 3' tertile NF1 variants in SNF. The analysis of syndecan expression on PBMCs RNAs from 16 SNF, 16 classic NF1 patients and 16 healthy controls showed that the expression levels of SDC2 and SDC3 were higher in SNF and NF1 patients than in controls; moreover, SDC2, SDC3 and SDC4 were significantly over expressed in patients mutated in the 3' tertile compared to controls. Two different mutational NF1 spectra seem to characterize SNF and classic NF1, suggesting a pathogenic role of NF1 3' tertile and its interactors, syndecans, in SNF. Our study, providing new insights on a possible role of neurofibromin C-terminal in SNF, could address effective personalized patient management and treatments.


Assuntos
Neurofibromatoses , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromina 1/genética , Mutação , Sindecanas/genética , Genes da Neurofibromatose 1
4.
Neurogenetics ; 24(3): 181-188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37145209

RESUMO

Neurofibromatosis type I (NF1) microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by the heterozygous deletion of NF1 and a variable number of flanking genes in the 17q11.2 region. This syndrome is characterized by more severe symptoms than those shown by patients with intragenic NF1 mutation and by variable expressivity, which is not fully explained by the haploinsufficiency of the genes included in the deletions. We here reevaluate an 8-year-old NF1 patient, who carries an atypical deletion generating the RNF135-SUZ12 chimeric gene, previously described when he was 3 years old. As the patient has developed multiple cutaneous/subcutaneous neurofibromas over the past 5 years, we hypothesized a role of RNF135-SUZ12 chimeric gene in the onset of the patient's tumor phenotype. Interestingly, SUZ12 is generally lost or disrupted in NF1 microdeletion syndrome and frequently associated to cancer as RNF135. Expression analysis confirmed the presence of the chimeric gene transcript and revealed hypo-expression of five out of the seven analyzed target genes of the polycomb repressive complex 2 (PRC2), to which SUZ12 belongs, in the patient's peripheral blood, indicating a higher transcriptional repression activity mediated by PRC2. Furthermore, decreased expression of tumor suppressor gene TP53, which is targeted by RNF135, was detected. These results suggest that RNF135-SUZ12 chimera may acquire a gain of function, compared with SUZ12 wild type in the PRC2 complex, and a loss of function relative to RNF135 wild type. Both events may have a role in the early onset of the patient's neurofibromas.


Assuntos
Neurofibroma , Neurofibromatose 1 , Masculino , Humanos , Neurofibromatose 1/genética , Complexo Repressor Polycomb 2/genética , Neurofibroma/genética , Fenótipo , Mutação , Ubiquitina-Proteína Ligases/genética
5.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077416

RESUMO

Neurofibromatosis type 2 is an autosomal dominant tumor-prone disorder mainly caused by NF2 point mutations or intragenic deletions. Few individuals with a complex phenotype and 22q12 microdeletions have been described. The 22q12 microdeletions' pathogenic effects at the genetic and epigenetic levels are currently unknown. We here report on 22q12 microdeletions' characterization in three NF2 patients with different phenotype complexities. A possible effect of the position was investigated by in silico analysis of 22q12 topologically associated domains (TADs) and regulatory elements, and by expression analysis of 12 genes flanking patients' deletions. A 147 Kb microdeletion was identified in the patient with the mildest phenotype, while two large deletions of 561 Kb and 1.8 Mb were found in the other two patients, showing a more severe symptomatology. The last two patients displayed intellectual disability, possibly related to AP1B1 gene deletion. The microdeletions change from one to five TADs, and the 22q12 chromatin regulatory landscape, according to the altered expression levels of four deletion-flanking genes, including PIK3IP1, are likely associated with an early ischemic event occurring in the patient with the largest deletion. Our results suggest that the identification of the deletion extent can provide prognostic markers, predictive of NF2 phenotypes, and potential therapeutic targets, thus overall improving patient management.


Assuntos
Deficiência Intelectual , Neurofibromatose 2 , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras , Humanos , Deficiência Intelectual/genética , Neurofibromatose 2/genética , Fenótipo
6.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36612057

RESUMO

Spinal neurofibromatosis (SNF), a phenotypic subclass of neurofibromatosis 1 (NF1), is characterized by bilateral neurofibromas involving all spinal roots. In order to deepen the understanding of SNF's clinical and genetic features, we identified 81 patients with SNF, 55 from unrelated families, and 26 belonging to 19 families with at least 1 member affected by SNF, and 106 NF1 patients aged >30 years without spinal tumors. A comprehensive NF1 mutation screening was performed using NGS panels, including NF1 and several RAS pathway genes. The main features of the SNF subjects were a higher number of internal neurofibromas (p < 0.001), nerve root swelling (p < 0.001), and subcutaneous neurofibromas (p = 0.03), while hyperpigmentation signs were significantly less frequent compared with the classical NF1-affected cohorts (p = 0.012). Fifteen patients underwent neurosurgical intervention. The histological findings revealed neurofibromas in 13 patients and ganglioneuromas in 2 patients. Phenotypic variability within SNF families was observed. The proportion of missense mutations was higher in the SNF cases than in the classical NF1 group (21.40% vs. 7.5%, p = 0.007), conferring an odds ratio (OR) of 3.34 (CI = 1.33−10.78). Two unrelated familial SNF cases harbored in trans double NF1 mutations that seemed to have a subclinical worsening effect on the clinical phenotype. Our study, with the largest series of SNF patients reported to date, better defines the clinical and genetic features of SNF, which could improve the management and genetic counseling of NF1.

7.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073228

RESUMO

The presence of thousands of repetitive sequences makes the centromere a fragile region subject to breakage. In this study we collected 31 cases of rearrangements of chromosome 18, of which 16 involved an acrocentric chromosome, during genetic screening done in three centers. We noticed a significant enrichment of reciprocal translocations between the centromere of chromosome 18 and the centromeric or pericentromeric regions of the acrocentrics. We describe five cases with translocation between chromosome 18 and an acrocentric chromosome, and one case involving the common telomere regions of chromosomes 18p and 22p. In addition, we bring evidence to support the hypothesis that chromosome 18 preferentially recombines with acrocentrics: (i) the presence on 18p11.21 of segmental duplications highly homologous to acrocentrics, that can justify a NAHR mechanism; (ii) the observation by 2D-FISH of the behavior of the centromeric regions of 18 respect to the centromeric regions of acrocentrics in the nuclei of normal subjects; (iii) the contact analysis among these regions on published Hi-C data from the human lymphoblastoid cell line (GM12878).


Assuntos
Cromossomos Humanos Par 18/genética , Translocação Genética , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Lactente , Masculino , Gravidez
8.
Genes (Basel) ; 10(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694342

RESUMO

Non-coding RNAs (ncRNAs) are known to regulate gene expression at the transcriptional and post-transcriptional levels, chromatin remodeling, and signal transduction. The identification of different species of ncRNAs, microRNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs)-and in some cases, their combined regulatory function on specific target genes-may help to elucidate their role in biological processes. NcRNAs' deregulation has an impact on the impairment of physiological programs, driving cells in cancer development. We here carried out a review of literature concerning the implication of ncRNAs on tumor development in neurofibromatosis type 1 (NF1), an inherited tumor predisposition syndrome. A number of miRNAs and a lncRNA has been implicated in NF1-associated tumors, such as malignant peripheral nerve sheath tumors (MPNSTs) and astrocytoma, as well as in the pathognomonic neurofibromas. Some authors reported that the lncRNA ANRIL was deregulated in the blood of NF1 patients with plexiform neurofibromas (PNFs), even if its role should be further elucidated. We here provided original data concerning the association of a specific genotype about ANRIL rs2151280 with the presence of optic gliomas and a mild expression of the NF1 phenotype. We also detected the LOH of ANRIL in different tumors from NF1 patients, supporting the involvement of ANRIL in some NF1-associated tumors. Our results suggest that ANRIL rs2151280 may be a potential diagnostic and prognostic marker, addressing early diagnosis of optic glioma and predicting the phenotype severity in NF1 patients.


Assuntos
Neurofibromatose 1/genética , Glioma do Nervo Óptico/genética , RNA Longo não Codificante/genética , Astrocitoma/complicações , Genes da Neurofibromatose 1 , Genótipo , Humanos , Perda de Heterozigosidade , MicroRNAs/genética , Neoplasias de Bainha Neural/complicações , Neurofibroma/complicações , Neurofibroma Plexiforme/complicações , Neurofibromatose 1/complicações , Glioma do Nervo Óptico/complicações , Glioma do Nervo Óptico/metabolismo , Fenótipo , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Transdução de Sinais/genética
9.
Haematologica ; 104(7): 1332-1341, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630974

RESUMO

The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Nucleares/genética , Adulto , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Nucleofosmina , Fenótipo , Via de Sinalização Wnt , Peixe-Zebra , Coesinas
10.
J Cell Physiol ; 234(5): 6067-6076, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246374

RESUMO

Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.


Assuntos
Histona Desacetilases/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Músculo Esquelético/citologia , Mioblastos/metabolismo , Peixe-Zebra
11.
Hum Genet ; 136(10): 1329-1339, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28776093

RESUMO

Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4-11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype-phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype-phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.


Assuntos
Efeitos da Posição Cromossômica , Deleção Cromossômica , Proteínas Ativadoras de GTPase , Regulação Neoplásica da Expressão Gênica , Neurofibromatose 1 , Complexo Repressor Polycomb 2 , Recombinação Genética , Ubiquitina-Proteína Ligases , Alelos , Pré-Escolar , Proteínas Ativadoras de GTPase/biossíntese , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Proteínas de Neoplasias , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Proteínas de Fusão Oncogênica , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS One ; 12(2): e0171663, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199346

RESUMO

In BRCA1/2 families, early-onset breast cancer (BrCa) cases may be also observed among non-carrier relatives. These women are considered phenocopies and raise difficult counselling issues concerning the selection of the index case and the residual risks estimate in negative family members. Few studies investigated the presence of potential genetic susceptibility factors in phenocopies, mainly focussing on BrCa-associated single-nucleotide polymorphisms. We hypothesized that, as for other Mendelian diseases, a revertant somatic mosaicism, resulting from spontaneous correction of a pathogenic mutation, might occur also in BRCA pedigrees. A putative low-level mosaicism in phenocopies, which has never been investigated, might be the causal factor undetected by standard diagnostic testing. We selected 16 non-carriers BrCa-affected from 15 BRCA1/2 families, and investigated the presence of mosaicism through MALDI-TOF mass spectrometry. The analyses were performed on available tumour samples (7 cases), blood leukocytes, buccal mucosa and urine samples (2 cases) or on blood only (7 cases). In one family (n.8), real-time PCR was also performed to analyse the phenocopy and her healthy parents. On the 16 phenocopies we did not detect the family mutations neither in the tumour, expected to display the highest mutation frequency, nor in the other analysed tissues. In family 8, all the genotyping assays did not detect mosaicism in the phenocopy or her healthy parents, supporting the hypothesis of a de novo occurrence of the BRCA2 mutation identified in the proband. These results suggest that somatic mosaicism is not likely to be a common phenomenon in BRCA1/2 families. As our families fulfilled high-risk selection criteria, other genetic factors might be responsible for most of these cases and have a significant impact on risk assessment in BRCA1/2 families. Finally, we found a de novo BRCA2 mutation, suggesting that, although rare, this event should be taken into account in the evaluation of high-risk families.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mosaicismo , Adulto , Neoplasias da Mama/diagnóstico , DNA/análise , DNA/isolamento & purificação , DNA/metabolismo , Tumor do Seio Endodérmico/diagnóstico , Tumor do Seio Endodérmico/genética , Feminino , Testes Genéticos , Genótipo , Humanos , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Adulto Jovem
13.
Mol Neurobiol ; 54(6): 4329-4342, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27343180

RESUMO

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, the main activatory subunit of cyclin-dependent kinase 5 (CDK5). The p35/CDK5 active complex plays a fundamental role in brain development and functioning, but its deregulated activity has also been implicated in various neurodegenerative disorders, including Alzheimer's disease (AD). CDK5R1 displays a large and highly evolutionarily conserved 3'-untranslated region (3'-UTR), a fact that has suggested a role for this region in the post-transcriptional control of CDK5R1 expression. Our group has recently demonstrated that two miRNAs, miR-103 and miR-107, regulate CDK5R1 expression and affect the levels of p35. MiR-103 and miR-107 belong to the miR-15/107 family, a group of evolutionarily conserved miRNAs highly expressed in human cerebral cortex. In this work, we tested the hypothesis that other members of this group of miRNAs, in addition to miR-103 and miR-107, were able to modulate CDK5R1 expression. We provide evidence that several miRNAs belonging to the miR-15/107 family regulate p35 levels. BACE1 expression levels were also found to be modulated by different members of this family. Furthermore, overexpression of these miRNAs led to reduced APP phosphorylation levels at the CDK5-specific Thr668 residue. We also show that miR-15/107 miRNAs display reduced expression levels in hippocampus and temporal cortex, but not in cerebellum, of AD brains. Moreover, increased CDK5R1 mRNA levels were observed in AD hippocampus tissues. Our results suggest that the downregulation of the miR-15/107 family might have a role in the pathogenesis of AD by increasing the levels of CDK5R1/p35 and consequently enhancing CDK5 activity.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia
14.
J Neurosurg ; 125(2): 450-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26745472

RESUMO

OBJECTIVE Skull base chordomas (SBCs) are rare dysembryogenetic invasive tumors with a variable tendency for recurrence. According to previous studies, the recurrence rate seems to be affected by both clinical variables and tumor biological features. The authors present the results of treatment of SBCs in a large series of patients and investigate the role of 1p36 chromosomal region loss of heterozygosity (LOH) as a prognostic factor. METHODS Between 1990 and 2011, 45 patients were treated for SBCs. The mean follow-up was 76 months (range 1-240 months). An LOH analysis was performed in 27 cases. Survival analysis was performed to determine clinical and biological parameters correlating with clinical outcome. RESULTS The 5- and 10-year overall survival rates were 67% and 57%, respectively. Five- and 10-year progression-free survival rates were 58% and 44%, respectively. Multivariate analysis showed that extent of resection, adjuvant radiation therapy, and absence of rhinopharynx invasion were positive independent predictors of overall survival. The latter 2 variables and a younger patient age were positive independent predictors of progression-free survival. Twenty-one patients showed 1p36 LOH. All events of recurrence and death clustered in the group of patients with 1p36 LOH; however, this biological marker was not statistically significant on multivariate analysis. CONCLUSIONS Resection is the treatment of choice in primary and recurrent SBC. Patient age, rhinopharynx invasion at diagnosis, extent of tumor removal, and postoperative radiation therapy influence SBC prognosis. Genetic analysis, even while showing interesting results, did not reveal 1p36 LOH as an independent predictor of clinical outcome.


Assuntos
Cordoma/mortalidade , Cordoma/terapia , Neoplasias da Base do Crânio/mortalidade , Neoplasias da Base do Crânio/terapia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cordoma/genética , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Estudos Retrospectivos , Neoplasias da Base do Crânio/genética , Fatores de Tempo , Adulto Jovem
15.
Oncotarget ; 5(14): 5712-24, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25071022

RESUMO

Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.


Assuntos
Cordoma/metabolismo , Proteína Ligante Fas/metabolismo , Notocorda/metabolismo , Receptor fas/metabolismo , Adulto , Idoso , Animais , Diferenciação Celular/fisiologia , Cordoma/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Notocorda/patologia , Adulto Jovem , Peixe-Zebra
16.
Biochim Biophys Acta ; 1839(6): 506-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792867

RESUMO

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, a specific activator of cyclin-dependent kinase 5 (CDK5). CDK5 and p35 have a fundamental role in neuronal migration and differentiation during CNS development. Both the CDK5R1 3'-UTR's remarkable size and its conservation during evolution strongly indicate an important role in post-transcriptional regulation. We previously validated different regulatory elements in the 3'-UTR of CDK5R1, which affect transcript stability, p35 levels and cellular migration through the binding with nELAV proteins and miR-103/7 miRNAs. Interestingly, a 138 bp-long region, named C2.1, was identified as the most mRNA destabilizing portion within CDK5R1 3'-UTR. This feature was maintained by a shorter region of 73 bp, characterized by two poly-U stretches. UV-CL experiments showed that this region interacts with protein factors. UV-CLIP assays and pull-down experiments followed by mass spectrometry analysis demonstrated that nELAV and hnRNPA2/B1 proteins bind to the same U-rich element. These RNA-binding proteins (RBPs) were shown to oppositely control CDK5R1 mRNA stability and p35 protein content at post-trascriptional level. While nELAV proteins have a positive regulatory effect, hnRNPA2/B1 has a negative action that is responsible for the mRNA destabilizing activity both of the C2.1 region and of the full-length 3'-UTR. In co-expression experiments of hnRNPA2/B1 and nELAV RBPs we observed an overall decrease of p35 content. We also demonstrated that hnRNPA2/B1 can downregulate nELAV protein content but not vice versa. This study, by providing new insights on the combined action of different regulatory factors, contributes to clarify the complex post-transcriptional control of CDK5R1 gene expression.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas ELAV/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Proteínas do Tecido Nervoso/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Western Blotting , Diferenciação Celular , Proteínas ELAV/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Imunoprecipitação , Luciferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
17.
J Med Genet ; 51(7): 436-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24711647

RESUMO

BACKGROUND: Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion syndrome compared to NF1 patients with intragenic mutation, presumably owing to haploinsufficiency of one or more genes included in the deletion interval and involved in heart development. In order to identify which genes could be responsible for cardiovascular malformations in the deleted patients, we carried out expression studies in mouse embryos and functional studies in zebrafish. METHODS AND RESULTS: The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, SUZ12 and UTP6, performed by in situ hybridisation, showed the expression of ADAP2 murine ortholog in heart during fundamental phases of cardiac morphogenesis. In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-injected embryos (morphants) displayed in vivo circulatory and heart shape defects. The molecular characterisation of morphants with cardiac specific markers showed that the injection of adap2-MOs causes defects in heart jogging and looping. Additionally, morphological and molecular analysis of adap2 morphants demonstrated that the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. CONCLUSIONS: Overall, our findings indicate that ADAP2 has a role in heart development, and might be a reliable candidate gene for the occurrence of cardiovascular malformations in patients with NF1 microdeletion and, more generally, for the occurrence of a subset of congenital heart defects.


Assuntos
Anormalidades Cardiovasculares/genética , Anormalidades Craniofaciais/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Neurofibromatoses/genética , Animais , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Coração/embriologia , Humanos , Camundongos , Morfogênese , Peixe-Zebra
18.
Nucleic Acids Res ; 41(5): 3201-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376935

RESUMO

Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.


Assuntos
Regiões 3' não Traduzidas , Proteínas ELAV/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Histonas/genética , Humanos , Sequências Repetidas Invertidas , Células MCF-7 , Biossíntese de Proteínas , Alinhamento de Sequência , Vertebrados
19.
Neurosurg Rev ; 35(1): 1-13; discussion 13-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006091

RESUMO

Chordomas are extremely rare tumours. They arise in the spheno-occipital region in 35% of cases. Chordomas usually present benign histopathological features but often exhibit a malignant clinical behaviour. Radical surgical removal and high-dose radiation therapy seem to be effective in tumour control and to improve survival rate. Despite the advancements in microsurgical techniques and the development of radiation therapies, clival chordomas still represent a challenge. Nevertheless it appears that chordomas that have been resected to the same extent and that received post-operative radiotherapy might exhibit different rates of regrowth. This result supports the hypothesis that the recurrence rate of chordomas might be dependent on biological variables other than the extent of resection and the post-operative radiotherapy. Genetic and molecular studies on oncogenesis of chordomas are still limited, but they represent the basis for the development of molecular targeted therapies. We present a review of the current knowledge about skull base chordomas biology, therapeutic options and related clinical outcome.


Assuntos
Cordoma/terapia , Neoplasias da Base do Crânio/terapia , Biomarcadores Tumorais/análise , Quimioterapia Adjuvante , Cordoma/radioterapia , Cordoma/cirurgia , Feminino , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Radioterapia Adjuvante , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/cirurgia , Taxa de Sobrevida , Resultado do Tratamento
20.
PLoS One ; 6(5): e20038, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625387

RESUMO

CDK5R1 encodes p35, a specific activator of the serine/threonine kinase CDK5, which plays crucial roles in CNS development and maintenance. CDK5 activity strongly depends on p35 levels and p35/CDK5 misregulation is deleterious for correct CNS function, suggesting that a tightly controlled regulation of CDK5R1 expression is needed for proper CDK5 activity. Accordingly, CDK5R1 expression was demonstrated to be controlled at both transcriptional and post-transcriptional levels, but a possible regulation through microRNAs (miRNAs) has never been investigated. We predicted, within the large CDK5R1 3'UTR several miRNA target sites. Among them, we selected for functional studies miR-103 and miR-107, whose expression has shown a strong inverse correlation with p35 levels in different cell lines. A significant reduction of CDK5R1 mRNA and p35 levels was observed after transfection of SK-N-BE neuroblastoma cells with the miR-103 or miR-107 precursor (pre-miR-103 or pre-miR-107). Conversely, p35 levels significantly increased following transfection of the corresponding antagonists (anti-miR-103 or anti-miR-107). Moreover, the level of CDK5R1 transcript shifts from the polysomal to the subpolysomal mRNA fraction after transfection with pre-miR-107 and, conversely, from the subpolysomal to the polysolmal mRNA fraction after transfection with anti-miR-107, suggesting a direct action on translation efficiency. We demonstrate, by means of luciferase assays, that miR-103 and miR-107 are able to directly interact with the CDK5R1 3'-UTR, in correspondence of a specific target site. Finally, miR-103 and miR-107 overexpression, as well as CDK5R1 silencing, caused a reduction in SK-N-BE migration ability, indicating that these miRNAs affect neuronal migration by modulating CDK5R1 expression. These findings indicate that miR-103 and miR-107 regulate CDK5R1 expression, allowing us to hypothesize that a miRNA-mediated mechanism may influence CDK5 activity and the associated molecular pathways.


Assuntos
Movimento Celular/fisiologia , MicroRNAs/fisiologia , Proteínas do Tecido Nervoso/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA