Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(7): e4706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37323096

RESUMO

BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.


Assuntos
Proteínas de Choque Térmico , Nucleotídeos , Humanos , Nucleotídeos/metabolismo , Temperatura , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/química , Adenosina Trifosfatases/química , Ligação Proteica
2.
medRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013302

RESUMO

RT-LAMP (reverse transcription - Loop-mediated isothermal amplification) has gained popularity for the detection of SARS-CoV-2. The high specificity, sensitivity, simple protocols and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents and their distribution under cold chain shipping limits RT-LAMP's applicability in low-income settings. The preparation of assays using homebrew enzymes and buffers has emerged worldwide as a response to these limitations and potential shortages. Here, we describe the production of Moloney murine leukemia virus (M-MLV) Reverse Transcriptase and BstLF DNA polymerase for the local implementation of RT-LAMP reactions at low cost. These reagents compared favorably to commercial kits and optimum concentrations were defined in order to reduce time to threshold, increase ON/OFF range and minimize enzyme quantities per reaction. As a validation, we tested the performance of these reagents in the detection of SARS-CoV-2 from RNA extracted from clinical nasopharyngeal samples, obtaining high agreement between RT-LAMP and RT-PCR clinical results. The in-house preparation of these reactions results in an order of magnitude reduction in costs, and thus we provide protocols and DNA to enable the replication of these tests at other locations. These results contribute to the global effort of developing open and low cost diagnostics that enable technological autonomy and distributed capacities in viral surveillance.

3.
J Biomol Tech ; 32(3): 114-120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35027869

RESUMO

Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) has gained popularity for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The high specificity, sensitivity, simple protocols, and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents, and their distribution under cold chain shipping limit RT-LAMP's applicability in low-income settings. The preparation of assays using homebrew enzymes and buffers has emerged worldwide as a response to these limitations and potential shortages. Here, we describe the production of Moloney murine leukemia virus reverse transcriptase and BstLF DNA polymerase for the local implementation of RT-LAMP reactions at low cost. These reagents compared favorably to commercial kits, and optimum concentrations were defined in order to reduce time to threshold, increase ON/OFF range, and minimize enzyme quantities per reaction. As a validation, we tested the performance of these reagents in the detection of SARS-CoV-2 from RNA extracted from clinical nasopharyngeal samples, obtaining high agreement between RT-LAMP and RT-PCR clinical results. The in-house preparation of these reactions results in an order of magnitude reduction in costs; thus, we provide protocols and DNA to enable the replication of these tests at other locations. These results contribute to the global effort of developing open and low-cost diagnostics that enable technological autonomy and distributed capacities in viral surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Indicadores e Reagentes , Camundongos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Sensibilidade e Especificidade
4.
Sci Rep ; 10(1): 9562, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533020

RESUMO

Knots are remarkable topological features in nature. The presence of knots in crystallographic structures of proteins have stimulated considerable research to determine the kinetic and thermodynamic consequences of threading a polypeptide chain. By mechanically manipulating MJ0366, a small single domain protein harboring a shallow trefoil knot, we allow the protein to refold from either the knotted or the unknotted denatured state to characterize the free energy profile associated to both folding pathways. By comparing the stability of the native state with reference to the knotted and unknotted denatured state we find that knotting the polypeptide chain of MJ0366 increase the folding energy barrier in a magnitude close to the energy cost of forming a knot randomly in the denatured state. These results support that a protein knot can be formed during a single cooperative step of folding but occurs at the expenses of a large increment on the free energy barrier.


Assuntos
Dobramento de Proteína , Desdobramento de Proteína , Dicroísmo Circular , Cinética , Methanocaldococcus/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Pinças Ópticas , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Imagem Individual de Molécula , Termodinâmica
5.
J Biol Chem ; 294(51): 19546-19564, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31719148

RESUMO

Hemocyanins are widely used as carriers, adjuvants, and nonspecific immunostimulants in cancer because they promote Th1 immunity in mammals. Hemocyanins also interact with glycan-recognizing innate immune receptors on antigen-presenting cells, such as the C-type lectin immune receptors mannose receptor (MR), macrophage galactose lectin (MGL), and the Toll-like receptors (TLRs), stimulating proinflammatory cytokine secretion. However, the role of N-linked oligosaccharides on the structural and immunological properties of hemocyanin is unclear. Mollusk hemocyanins, such as Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), are oligomeric glycoproteins with complex dodecameric quaternary structures and heterogeneous glycosylation patterns, primarily consisting of mannose-rich N-glycans. Here, we report that enzyme-catalyzed N-deglycosylation of CCH, FLH, and KLH disrupts their quaternary structure and impairs their immunogenic effects. Biochemical analyses revealed that the deglycosylation does not change hemocyanin secondary structure but alters their refolding mechanism and dodecameric structure. Immunochemical analyses indicated decreased binding of N-deglycosylated hemocyanins to the MR and MGL receptors and TLR4 and reduced endocytosis concomitant with an impaired production of tumor necrosis factor α, and interleukins 6 and 12 (IL-6 and IL-12p40, respectively) in macrophages. Evaluating the function of N-deglycosylated hemocyanins in the humoral immune response and their nonspecific antitumor effects in the B16F10 melanoma model, we found that compared with native hemocyanins N-deglycosylated hemocyanins elicited reduced antibody titers, as well as partially diminished antitumor effects and altered carrier activities. In conclusion, the glycan content of hemocyanins is, among other structural characteristics, critically required for their immunological activities and should be considered in biomedical applications.


Assuntos
Hemocianinas/química , Hemocianinas/imunologia , Imunidade Humoral , Moluscos/química , Adjuvantes Imunológicos , Animais , Linhagem Celular , Citocinas/imunologia , Galactose/química , Glicosilação , Lectinas/química , Lectinas Tipo C/química , Macrófagos/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/química , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Polissacarídeos/química , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA