Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749468

RESUMO

Objective.Fast and accurate deformable image registration (DIR), including DIR uncertainty estimation, is essential for safe and reliable clinical deployment. While recent deep learning models have shown promise in predicting DIR with its uncertainty, challenges persist in proper uncertainty evaluation and hyperparameter optimization for these methods. This work aims to develop and evaluate a model that can perform fast DIR and predict its uncertainty in seconds.Approach.This study introduces a novel probabilistic multi-resolution image registration model utilizing convolutional neural networks to estimate a multivariate normal distributed dense displacement field (DDF) in a multimodal image registration problem. To assess the quality of the DDF distribution predicted by the model, we propose a new metric based on the Kullback-Leibler divergence. The performance of our approach was evaluated against three other DIR algorithms (VoxelMorph, Monte Carlo dropout, and Monte Carlo B-spline) capable of predicting uncertainty. The evaluation of the models included not only the quality of the deformation but also the reliability of the estimated uncertainty. Our application investigated the registration of a treatment planning computed tomography (CT) to follow-up cone beam CT for daily adaptive radiotherapy.Main results.The hyperparameter tuning of the models showed a trade-off between the estimated uncertainty's reliability and the deformation's accuracy. In the optimal trade-off, our model excelled in contour propagation and uncertainty estimation (p <0.05) compared to existing uncertainty estimation models. We obtained an average dice similarity coefficient of 0.89 and a KL-divergence of 0.15.Significance.By addressing challenges in DIR uncertainty estimation and evaluation, our work showed that both the DIR and its uncertainty can be reliably predicted, paving the way for safe deployment in a clinical environment.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Incerteza , Processamento de Imagem Assistida por Computador/métodos , Humanos , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos
2.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38457838

RESUMO

Objective. Manual analysis of individual cancer lesions to assess disease response is clinically impractical and requires automated lesion tracking methodologies. However, no methodology has been developed for whole-body individual lesion tracking, across an arbitrary number of scans, and acquired with various imaging modalities.Approach. This study introduces a lesion tracking methodology and benchmarked it using 2368Ga-DOTATATE PET/CT and PET/MR images of eight neuroendocrine tumor patients. The methodology consists of six steps: (1) alignment of multiple scans via image registration, (2) body-part labeling, (3) automatic lesion-wise dilation, (4) clustering of lesions based on local lesion shape metrics, (5) assignment of lesion tracks, and (6) output of a lesion graph. Registration performance was evaluated via landmark distance, lesion matching accuracy was evaluated between each image pair, and lesion tracking accuracy was evaluated via identical track ratio. Sensitivity studies were performed to evaluate the impact of lesion dilation (fixed versus automatic dilation), anatomic location, image modalities (inter- versus intra-modality), registration mode (direct versus indirect registration), and track size (number of time-points and lesions) on lesion matching and tracking performance.Main results. Manual contouring yielded 956 lesions, 1570 lesion-matching decisions, and 493 lesion tracks. The median residual registration error was 2.5 mm. The automatic lesion dilation led to 0.90 overall lesion matching accuracy, and an 88% identical track ratio. The methodology is robust regarding anatomic locations, image modalities, and registration modes. The number of scans had a moderate negative impact on the identical track ratio (94% for 2 scans, 91% for 3 scans, and 81% for 4 scans). The number of lesions substantially impacted the identical track ratio (93% for 2 nodes versus 54% for ≥5 nodes).Significance. The developed methodology resulted in high lesion-matching accuracy and enables automated lesion tracking in PET/CT and PET/MR.


Assuntos
Tumores Neuroendócrinos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Tumores Neuroendócrinos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
World Neurosurg ; 151: e78-e85, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819703

RESUMO

OBJECTIVE: H3K27M mutation in gliomas has prognostic implications. Previous magnetic resonance imaging (MRI) studies have reported variable rates of tumoral enhancement, necrotic changes, and peritumoral edema in H3K27M-mutant gliomas, with no distinguishing imaging features compared with wild-type gliomas. We aimed to construct an MRI machine learning (ML)-based radiomic model to predict H3K27M mutation in midline gliomas. METHODS: A total of 109 patients from 3 academic centers were included in this study. Fifty patients had H3K27M mutation and 59 were wild-type. Conventional MRI sequences (T1-weighted, T2-weighted, T2-fluid-attenuated inversion recovery, postcontrast T1-weighted, and apparent diffusion coefficient maps) were used for feature extraction. A total of 651 radiomic features per each sequence were extracted. Patients were randomly selected with a 7:3 ratio to create training (n = 76) and test (n = 33) data sets. An extreme gradient boosting algorithm (XGBoost) was used in ML-based model development. Performance of the model was assessed by area under the receiver operating characteristic curve. RESULTS: Pediatric patients accounted for a larger proportion of the study cohort (60 pediatric [55%] vs. 49 adult [45%] patients). XGBoost with additional feature selection had an area under the receiver operating characteristic curve of 0.791 and 0.737 in the training and test data sets, respectively. The model achieved accuracy, precision (positive predictive value), recall (sensitivity), and F1 (harmonic mean of precision and recall) measures of 72.7%, 76.5%, 72.2%, and 74.3%, respectively, in the test set. CONCLUSIONS: Our multi-institutional study suggests that ML-based radiomic analysis of multiparametric MRI can be a promising noninvasive technique to predict H3K27M mutation status in midline gliomas.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Histonas/genética , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Algoritmos , Área Sob a Curva , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA