Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132097

RESUMO

Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy.


Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Células MCF-7 , Reprogramação Metabólica , Proteômica , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
2.
Cancers (Basel) ; 14(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008379

RESUMO

Resistance to endocrine therapy is still a major clinical challenge in the management of estrogen receptor α-positive (ERα+) breast cancer (BC). Here, the role of the Forkhead box class O (FoxO)3a transcription factor in tumor progression has been evaluated in tamoxifen-resistant BC cells (TamR), expressing lower levels of FoxO3a compared to sensitive ones. FoxO3a re-expression reduces TamR motility (wound-healing and transmigration assays) and invasiveness (matrigel transwell invasion assays) through the mRNA (qRT-PCR) and protein (Western blot) induction of the integrin α5 subunit of the α5ß1 fibronectin receptor, a well-known membrane heterodimer controlling cell adhesion and signaling. The induction occurs through FoxO3a binding to a specific Forkhead responsive core sequence located on the integrin α5 promoter (cloning, luciferase, and ChIP assays). Moreover, FoxO3a failed to inhibit migration and invasion in integrin α5 silenced (siRNA) cells, demonstrating integrin α5 involvement in both processes. Finally, using large-scale gene expression data sets, a strong positive correlation between FoxO3a and integrin α5 in ERα+, but not in ER-negative (ERα-), BC patients emerged. Altogether, our data show how the oncosuppressor FoxO3a, by increasing the expression of its novel transcriptional target integrin α5, reverts the phenotype of endocrine-resistant BC toward a lower aggressiveness.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33117773

RESUMO

Natural products and herbal therapies represent a thriving field of research, but methods for the production of plant-derived compounds with a significative biological activity by synthetic methods are required. Conventional commercial production by chemical synthesis or solvent extraction is not yet sustainable and economical because toxic solvents are used, the process involves many steps, and there is generally a low amount of the product produced, which is often mixed with other or similar by-products. For this reason, alternative, sustainable, greener, and more efficient processes are required. Membrane processes are recognized worldwide as green technologies since they promote waste minimization, material diversity, efficient separation, energy saving, process intensification, and integration. This article describes the production, characterization, and utilization of bioactive compounds derived from renewable waste material (olive leaves) as drug candidates in breast cancer (BC) treatment. In particular, an integrated membrane process [composed by a membrane bioreactor (MBR) and a membrane emulsification (ME) system] was developed to produce a purified non-commercially available phytotherapic compound: the oleuropein aglycone (OLA). This method achieves a 93% conversion of the substrate (oleuropein) and enables the extraction of the compound of interest with 90% efficiency in sustainable conditions. The bioderived compound exercised pro-apoptotic and antiproliferative activities against MDA-MB-231 and Tamoxifen-resistant MCF-7 (MCF-7/TR) cells, suggesting it as a potential agent for the treatment of breast cancer including hormonal resistance therapies.

4.
Cancers (Basel) ; 11(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31769419

RESUMO

Background: Resistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. Methods: FoxO3a involvement in the acquisition and reversion of tamoxifen resistance was assessed in vitro in three parental ER+ breast cancer cells, MCF-7, T47D and ZR-75-1, in the deriving Tamoxifen resistant models (TamR) and in Tet-inducible TamR/FoxO3a stable cell lines, by growth curves, PLA, siRNA, RT-PCR, Western blot, Immunofluorescence, Transmission Electron Microscopy, TUNEL, cell cycle, proteomics analyses and animal models. FoxO3a clinical relevance was validated in silico by Kaplan-Meier survival curves. Results: Here, we show that tamoxifen resistant breast cancer cells (TamR) express low FoxO3a levels. The hyperactive growth factors signaling, characterizing these cells, leads to FoxO3a hyper-phosphorylation and subsequent proteasomal degradation. FoxO3a re-expression by using TamR tetracycline inducible cells or by treating TamR with the anticonvulsant lamotrigine (LTG), restored the sensitivity to the antiestrogen and strongly reduced tumor mass in TamR-derived mouse xenografts. Proteomics data unveiled novel potential mediators of FoxO3a anti-proliferative and pro-apoptotic activity, while the Kaplan-Meier analysis showed that FoxO3a is predictive of a positive response to tamoxifen therapy in Luminal A breast cancer patients. Conclusions: Altogether, our data indicate that FoxO3a is a key target to be exploited in endocrine-resistant tumors. In this context, LTG, being able to induce FoxO3a, might represent a valid candidate in combination therapy to prevent resistance to tamoxifen in patients at risk.

5.
Mol Cancer Res ; 16(6): 923-934, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29523760

RESUMO

Breast cancer is a complex and heterogeneous disease, with distinct histologic features dictating the therapy. Although the clinical outcome of breast cancer patients has been considerably improved, the occurrence of resistance to common endocrine and chemotherapy treatments remains the major cause of relapse and mortality. Thus, efforts in identifying new molecules to be employed in breast cancer therapy are needed. As a "faster" alternative to reach this aim, we evaluated whether lamotrigine, a broadly used anticonvulsant, could be "repurposed" as an antitumoral drug in breast cancer. Our data show that lamotrigine inhibits the proliferation, the anchorage-dependent, and independent cell growth in breast cancer cells (BCC), including hormone-resistant cell models. These effects were associated with cell-cycle arrest and modulation of related proteins (cyclin D1, cyclin E, p27Kip1, and p21Waf1/Cip1), all target genes of FoxO3a, an ubiquitous transcription factor negatively regulated by AKT. Lamotrigine also increases the expression of another FoxO3a target, PTEN, which, in turn, downregulates the PI3K/Akt signaling pathway, with consequent dephosphorylation, thus activation, of FoxO3a. Moreover, lamotrigine induces FoxO3a expression by increasing its transcription through FoxO3a recruitment on specific FHRE located on its own promoter, in an autoregulatory fashion. Finally, lamotrigine significantly reduced tumor growth in vivo, increasing FoxO3a expression.Implications: The anticonvulsant drug lamotrigine shows strong antiproliferative activity on breast cancer, both in vitro and in vivo Thus, drug repurposing could represent a valuable option for a molecularly targeted therapy in breast cancer patients. Mol Cancer Res; 16(6); 923-34. ©2018 AACR.


Assuntos
Anticonvulsivantes/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proteína Forkhead Box O3/genética , Lamotrigina/uso terapêutico , Anticonvulsivantes/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Lamotrigina/farmacologia , Transdução de Sinais
6.
Oncotarget ; 7(36): 57955-57969, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27462784

RESUMO

Loss of progesterone-receptors (PR) expression is associated with breast cancer progression. Herein we provide evidence that OHPg/PR-B through Beclin-1 evoke autophagy-senescence transition, in breast cancer cells. Specifically, OHPg increases Beclin-1 expression through a transcriptional mechanism due to the occupancy of Beclin-1 promoter by PR-B, together with the transcriptional coactivator SRC-2. This complex binds at a canonical half progesterone responsive element, which is fundamental for OHPg effects, as shown by site-directed mutagenesis. Beside, OHPg via non-genomic action rapidly activates JNK, which phosphorylates Bcl-2, producing the functional release from Beclin-1 interaction. This is not linked to an efficient autophagic flux, since p62 levels, marker of degradation via lysosomes, were not reduced after sustained OHPg stimulus. Instead, the cell cycle inhibitor p27 was induced, together with an irreversible G1 arrest, hallmark of cellular senescence. Specifically the increase of senescence-associated ß-galactosidase activity was blocked by Bcl-2 siRNA but also by Beclin-1 siRNA. Collectively these findings support the importance of PR-B expression in breast cancer cells, thus targeting PR-B may be a useful strategy to provide additional approaches to existing therapies for breast cancer patients.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Neoplasias da Mama/metabolismo , Senescência Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Progesterona/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Ligantes , Células MCF-7 , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Progesterona/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , beta-Galactosidase/metabolismo
7.
Oncotarget ; 7(11): 12651-61, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26862856

RESUMO

Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21.The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues.Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells.Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies.


Assuntos
Androgênios/farmacologia , Neoplasias da Mama/metabolismo , MicroRNAs/biossíntese , Nandrolona/análogos & derivados , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/efeitos dos fármacos , Nandrolona/farmacologia
8.
Oncotarget ; 7(2): 1262-75, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26556856

RESUMO

Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.


Assuntos
Neoplasias da Mama/genética , Leptina/genética , Células-Tronco Neoplásicas/metabolismo , Células Estromais/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estimativa de Kaplan-Meier , Leptina/metabolismo , Leptina/farmacologia , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Microambiente Tumoral/genética
9.
Eur J Med Chem ; 107: 275-87, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26599533

RESUMO

A series of unknown 3-(alkyl(dialkyl)amino)benzofuro[2,3-f]quinazolin-1(2H)-ones 4-17 has been synthesized as new ellipticine analogs, in which the carbazole moiety and the pyridine ring were replaced by a dibenzofuran residue and a pyrimidine ring, respectively. The synthesis of these benzofuroquinazolinones 4-17 was performed in a simple one-pot reaction using 3-aminodibenzofuran or its 2-methoxy derivative, as starting materials. From 3-(dipropylamino)-5-methoxybenzofuro[2,3-f] quinazolin-1(2H)-one (13), we prepared 3-(dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (18), referred to as DPA-HBFQ-1. The cytotoxic activities of all the synthesized compounds, tested in different human breast cancer cell lines, revealed that DPA-HBFQ-1 was the most active compound. In particular, the latter was able to inhibit anchorage-dependent and -independent cell growth and to induce apoptosis in estrogen receptor alpha (ERα)-positive and -negative breast cancer cells. It did not affect proliferation and apoptotic responses in MCF-10A normal breast epithelial cells. The observed effects have been ascribed to an enhanced p21(Cip1/WAF1) expression in a p53-dependent manner of tumor suppressor and to a selective inhibition of human topoisomerase II. In addition, DPA-HBFQ-1 exerted growth inhibitory effects also in other cancer cell lines, even though with a lower cytotoxic activity. Our results indicate DPA-HBFQ-1 as a good candidate to be useful as cancer therapeutic agent, particularly for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinazolinonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofuranos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Química Sintética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Células MCF-7/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Quinazolinonas/química , Tamoxifeno/farmacologia , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Proteína Supressora de Tumor p53/metabolismo
10.
Biochim Biophys Acta ; 1850(11): 2185-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26272430

RESUMO

BACKGROUND: The omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may form conjugates with amines that have potential health benefits against common diseases including cancers. Here we synthesized DHA-dopamine (DHADA) and EPA-dopamine (EPADA) conjugates and studied their biological effects on different breast cancer cell lines. METHODS AND RESULTS: MTT assays indicated that increasing concentrations of DHADA and EPADA significantly affected viability in MCF-7, SKBR3 and MDA-MB-231 breast cancer cells, whereas no effect was observed in MCF-10A non-tumorigenic epithelial breast cells. DHADA and EPADA enhanced Beclin-1 expression, as evidenced by immunoblotting, real-time-PCR and functional analyses. Chromatin Immunoprecipitation (ChIP) and Re-ChIP assays revealed that both compounds induced recruitment of Peroxisome-Proliferator-Activated-Receptor gamma (PPARγ) and RNA Polymerase-II at the Retinoic-X-Receptor binding region on Beclin-1 promoter. Moreover, both compounds enhanced autophagosome formation, evaluated by LC-3 and monodansylcadaverine labeling, that was prevented by the PPARγ antagonist GW9662, addressing the direct involvement of PPARγ. Noteworthy, long-term treatment with DHADA and EPADA caused the blockade of autophagic flux followed by apoptotic cell death as evidenced by PARP cleavage and DNA fragmentation in all breast cancer cells. CONCLUSIONS: We have provided new insights into the molecular mechanism through which PPARγ, as a central molecule in the cross talk between autophagy and apoptosis, mediates DHADA- and EPADA-induced cell death in breast cancer cells. GENERAL SIGNIFICANCE: Our findings suggest that omega-3 DHADA- and EPADA activation of PPARγ may assume biological relevance in setting novel adjuvant therapeutic interventions in breast carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Dopamina/farmacologia , Ácido Eicosapentaenoico/farmacologia , PPAR gama/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Regiões Promotoras Genéticas
11.
Oncotarget ; 6(22): 19190-203, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26131713

RESUMO

We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Ciclopentanos/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Adolescente , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
FASEB J ; 29(5): 2150-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25657113

RESUMO

Obesity is a risk factor for breast cancer, largely due to altered expression of various adipocytokines. As it concerns adiponectin, there are not univocal results regarding its role in breast cancer occurrence and progression. Here, we demonstrate that in animals injected with human estrogen receptor (ER)-α-negative MDA-MB-231 cells pretreated with adiponectin (1 and 5 µg/ml), a significant reduction (60 and 40%, respectively) in tumor volume is observed, whereas an increased tumor growth (54 and 109%, respectively) is evidenced in the animals receiving human ER-α-positive MCF-7 cells. Moreover, cyclin D1 (CD1) mRNA and protein levels are decreased in MDA-MB-231 cells, whereas they are up-regulated in ER-α-positive cells by adiponectin. These findings fit with the opposite effects of adiponectin on CD1 promoter: 0.44- and 0.34-fold decrease in MDA-MB-231 cells and 0.63- and 0.95-fold increase in MCF-7 cells, treated with 1 and 5 µg/ml, respectively. Functional studies indicate that these effects are mediated by the specific protein 1 motif located in the CD1 promoter. In the absence of ER-α, the adiponectin-mediated down-regulation of CD1 involves the recruitment of corepressors. In the presence of ER-α, the adiponectin-induced expression of CD1 requires the involvement of an activator complex. In conclusion, we propose that a possible mechanism through which adiponectin differently affects breast cancer growth is the opposite modulation of CD1 levels accordingly to ER-α expression.


Assuntos
Adiponectina/farmacologia , Neoplasias da Mama/metabolismo , Ciclina D1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Imunoprecipitação da Cromatina , Ciclina D1/genética , Ensaio de Desvio de Mobilidade Eletroforética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Mutagênese Sítio-Dirigida , Mutação/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Células Tumorais Cultivadas
13.
Breast Cancer Res Treat ; 146(2): 273-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928526

RESUMO

Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.


Assuntos
Antineoplásicos Hormonais/farmacologia , Aromatase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tamoxifeno/farmacologia , Aromatase/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
14.
Breast Cancer Res ; 16(1): R21, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24552459

RESUMO

INTRODUCTION: The two isoforms of estrogen receptor (ER) alpha and beta play opposite roles in regulating proliferation and differentiation of breast cancers, with ER-alpha mediating mitogenic effects and ER-beta acting as a tumor suppressor. Emerging data have reported that androgen receptor (AR) activation inhibits ER-positive breast cancer progression mainly by antagonizing ER-alpha signaling. However, to date no studies have specifically evaluated a potential involvement of ER-beta in the inhibitory effects of androgens. METHODS: ER-beta expression was examined in human breast cancer cell lines using real-time PCR, Western blotting and small interfering RNA (siRNA) assays. Mutagenesis studies, electromobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were performed to assess the effects of mibolerone/AR on ER-beta promoter activity and binding. RESULTS: In this study, we demonstrate that mibolerone, a synthetic androgen ligand, up-regulates ER-beta mRNA and protein levels in ER-positive breast cancer cells. Transient transfection experiments, using a vector containing the human ER-beta promoter region, show that mibolerone increases basal ER-beta promoter activity. Site-directed mutagenesis and deletion analysis reveal that an androgen response element (ARE), TGTTCT motif located at positions -383 and -377, is critical for mibolerone-induced ER-beta up-regulation in breast cancer cells. This occurs through an increased recruitment of AR to the ARE site within the ER-beta promoter region, along with an enhanced occupancy of RNA polymerase II. Finally, silencing of ER-beta gene expression by RNA interference is able to partially reverse the effects of mibolerone on cell proliferation, p21 and cyclin D1 expression. CONCLUSIONS: Collectively, these data provide evidence for a novel mechanism by which activated AR, through an up-regulation of ER-beta gene expression, inhibits breast cancer cell growth.


Assuntos
Neoplasias da Mama/patologia , Receptor beta de Estrogênio/biossíntese , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/biossíntese , Ativação Enzimática , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Polimerase II/genética , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Congêneres da Testosterona/farmacologia , Regulação para Cima , Proteínas rho de Ligação ao GTP/biossíntese
15.
Cell Cycle ; 13(4): 553-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24335340

RESUMO

Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer.   Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα- MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.


Assuntos
Adiponectina/metabolismo , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Adiponectina/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/genética , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Ativação Transcricional
16.
Mol Cell Endocrinol ; 382(1): 205-217, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24121026

RESUMO

Several studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRß1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation. In addition, silencing of TRß1 or Oct-1 expression by RNA interference reversed both increased cell proliferation and up-regulation of cyclin D1, underlying the important role of both transcriptional factors in mediating these effects. Finally, T3-induced increase in cell growth was abrogated after knocking down cyclin D1 expression. All these findings highlight a new molecular mechanism by which T3 promotes thyroid cancer cell growth.


Assuntos
Carcinoma/metabolismo , Carcinoma/patologia , Ciclina D1/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Tri-Iodotironina/farmacologia , Carcinoma Papilar , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Câncer Papilífero da Tireoide , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Endocrinology ; 153(11): 5157-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22962253

RESUMO

Local estrogen production by aromatase is an important mechanism of autocrine stimulation in hormone-dependent breast cancer. We have previously shown that 17-ß estradiol (E(2)) rapidly enhances aromatase enzymatic activity through an increase of tyrosine protein phosphorylation controlled by the activity of the c-Src kinase in breast cancer cells. Here, we investigated the protein tyrosine phosphatase PTP1B (protein tyrosine phosphatase 1B) as a potential regulator of aromatase activity. We demonstrated a specific association between PTP1B and aromatase at protein-protein level and a reduction of aromatase activity in basal and E(2)-treated MCF-7 and ZR75 breast cancer cells when PTP1B was overexpressed. Indeed, a specific tyrosine phosphatase inhibitor increased basal and E(2)-induced enzymatic activity as well as tyrosine phosphorylation status of the purified aromatase protein. Moreover, E(2) through phosphatidylinositol 3 kinase/Akt activation caused a significant decrease of PTP1B catalytic activity along with an increase in its serine phosphorylation. Concomitantly, the phosphatidylinositol 3 kinase inhibitor LY294002 or a dominant negative of Akt was able to reduce the E(2) stimulatory effects on activity and tyrosine phosphorylation levels of aromatase. Taken together, our results suggest that E(2) can impair PTP1B ability to dephosphorylate aromatase, and thus it increases its enzymatic activity, creating a positive feedback mechanism for estradiol signaling in breast cancer.


Assuntos
Aromatase/metabolismo , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Feminino , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
18.
Am J Pathol ; 179(2): 1030-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21704006

RESUMO

Obesity is a major risk factor for the development and progression of breast cancer. Leptin, a cytokine mainly produced by adipocytes, plays a crucial role in mammary carcinogenesis and is elevated in hyperinsulinemia and insulin resistance. The antidiabetic thiazolidinediones inhibit leptin gene expression through ligand activation of the peroxisome proliferator-activated receptor-γ (PPARγ) and exert antiproliferative and apoptotic effects on breast carcinoma. In this study, we investigated the ability of PPARγ ligands to counteract leptin stimulatory effects on breast cancer growth in either in vivo or in vitro models. The results show that activation of PPARγ prevented the development of leptin-induced MCF-7 tumor xenografts and inhibited the increased cell-cell aggregation and proliferation observed on leptin exposure. PPARγ ligands abrogated the leptin-induced up-regulation of leptin gene expression and its receptors in breast cancer. PPARγ-mediated repression of leptin gene involved the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors corepressors on the glucocorticoid responsive element site in the leptin gene expression regulatory region in the presence of glucocorticoid receptor and PPARγ. In addition, PPARγ ligands inhibited leptin signaling mediated by MAPK/STAT3/Akt phosphorylation and counteracted leptin stimulatory effect on estrogen signaling. These findings suggest that PPARγ ligands may have potential therapeutic benefits in the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Leptina/metabolismo , PPAR gama/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Humanos , Técnicas In Vitro , Ligantes , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Nus , Obesidade/complicações , Interferência de RNA , Receptores de Glucocorticoides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Risco , Transdução de Sinais
19.
Breast Cancer Res Treat ; 124(1): 63-77, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20052536

RESUMO

In breast tumors the expression of estrogen receptor alpha (ERα) is known to be associated with a more favorable prognosis. ERα expression has been reported to reduce the metastatic potential of breast cancer cells. Recently, we have observed that extracellular matrix proteins activate ERα and that both liganded and unliganded receptor modulate cell invasiveness acting at nuclear level. To explain the mechanisms by which ERα regulates cell adhesion, we have evaluated the expression of α(5)ß(1) integrin, prevalently expressed in stationary cells, in response to 17ß-estradiol (E2). Here we show that E2/ERα increases the expression of integrin α(5)ß(1) through Sp1-mediated binding to a GC-rich region located upstream of an ERE half-site in the 5' flanking region of the α(5) gene forming a ternary ERα-Sp1-DNA complex. Estrogen responsiveness of the α(5) gene promoter, as observed in HeLa cells, underlies a general mechanism of regulation which is not strictly linked to the cell type. Our data reveal novel insight into the molecular mechanisms sustaining the reduced invasiveness of ERα expressing cells demonstrating that α(5)ß(1) integrin expression is related to the maintenance of the stationary status of the cells, counteracting E2/ERα capability to enhance breast cancer cell migration and invasion.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Receptor alfa de Estrogênio/metabolismo , Integrina alfa5/metabolismo , Fator de Transcrição Sp1/metabolismo , Região 5'-Flanqueadora , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Integrina alfa5/genética , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Invasividade Neoplásica , Interferência de RNA , RNA Mensageiro/metabolismo , Elementos de Resposta , Fatores de Tempo , Transcrição Gênica , Transfecção , Regulação para Cima
20.
Mol Nutr Food Res ; 54(6): 833-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20013881

RESUMO

The growth of many breast tumors is stimulated by estradiol (E2), which activates a classic mechanism of regulation of gene expression and signal transduction pathways inducing cell proliferation. Polyphenols of natural origin with chemical similarity to estrogen have been shown to interfere with tumor cell proliferation. The aim of this study was to investigate whether hydroxytyrosol (HT) and oleuropein (OL), two polyphenols contained in extra-virgin olive oil, can affect breast cancer cell proliferation interfering with E2-induced molecular mechanisms. Both HT and OL inhibited proliferation of MCF-7 breast cancer cells. Luciferase gene reporter experiments, using a construct containing estrogen responsive elements able to bind estrogen receptor alpha (ERalpha) and the study of the effects of HT or OL on ERalpha expression, demonstrated that HT and OL are not involved in ERalpha-mediated regulation of gene expression. However, further experiments pointed out that both OL and HT determined a clear inhibition of E2-dependent activation of extracellular regulated kinase1/2 belonging to the mitogen activating protein kinase family. Our study demonstrated that HT and OL can have a chemo-preventive role in breast cancer cell proliferation through the inhibition of estrogen-dependent rapid signals involved in uncontrolled tumor cell growth.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Álcool Feniletílico/análogos & derivados , Inibidores de Proteínas Quinases/farmacologia , Piranos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Estradiol/fisiologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Glucosídeos Iridoides , Iridoides , Álcool Feniletílico/farmacologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA