Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308255, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757578

RESUMO

Metabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.

2.
Sci Rep ; 14(1): 8469, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605098

RESUMO

Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.


Assuntos
Tecido Adiposo , Neoplasias , Humanos , Tecido Adiposo/patologia , Adipócitos , Obesidade/complicações , Gordura Subcutânea/patologia , Neoplasias/patologia
3.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233399

RESUMO

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Assuntos
Trifosfato de Adenosina , Canais de Potássio , Trifosfato de Adenosina/metabolismo , Canais de Potássio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Cardíacas/metabolismo
4.
Biomolecules ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759703

RESUMO

Calcium (Ca2+) ions act as a second messenger, regulating several cell functions. Mitochondria are critical organelles for the regulation of intracellular Ca2+. Mitochondrial calcium (mtCa2+) uptake is ensured by the presence in the inner mitochondrial membrane (IMM) of the mitochondrial calcium uniporter (MCU) complex, a macromolecular structure composed of pore-forming and regulatory subunits. MtCa2+ uptake plays a crucial role in the regulation of oxidative metabolism and cell death. A lot of evidence demonstrates that the dysregulation of mtCa2+ homeostasis can have serious pathological outcomes. In this review, we briefly discuss the molecular structure and the function of the MCU complex and then we focus our attention on human diseases in which a dysfunction in mtCa2+ has been shown.

5.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298327

RESUMO

The large environmental contamination of drinking water by perfluoroalkyl substances (PFAS) markedly increased the plasma levels of pentadecafluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in a Northern Italy population with a high prevalence of arterial hypertension and cardiovascular disease. As the link between PFAS and arterial hypertension is unknown, we investigated if they enhance the biosynthesis of the well-known pressor hormone aldosterone. We found that PFAS increased aldosterone synthase (CYP11B2) gene expression by three-fold and doubled aldosterone secretion and cell and mitochondria reactive oxygen species (ROS) production over controls (p < 0.01 for all) in human adrenocortical carcinoma cells HAC15. They also enhanced the effects of Ang II on CYP11B2 mRNA and aldosterone secretion (p < 0.01 for all). Moreover, when added 1 h before, the ROS scavenger tempol abolished the effect of PFAS on CYP11B2 gene expression. These results indicate that at concentrations mimicking those found in human plasma of exposed individuals, PFAS are potent disruptors of human adrenocortical cell function, and might act as causative factors of human arterial hypertension via increased aldosterone production.


Assuntos
Neoplasias do Córtex Suprarrenal , Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Hipertensão , Humanos , Aldosterona/metabolismo , Poluentes Ambientais/toxicidade , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Espécies Reativas de Oxigênio , Hipertensão/induzido quimicamente , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade
6.
Vaccines (Basel) ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37243055

RESUMO

Introduction: In Italy, on December 2020, workers in the education sector were identified as a priority population to be vaccinated against COVID-19. The first authorised vaccines were the Pfizer-BioNTech mRNA (BNT162b2) and the Oxford-AstraZeneca adenovirus vectored (ChAdOx1 nCoV-19) vaccines. Aim: To investigate the adverse effects of two SARS-CoV-2 vaccines in a real-life preventive setting at the University of Padova. Methods: Vaccination was offered to 10116 people. Vaccinated workers were asked to voluntarily report symptoms via online questionnaires sent to them 3 weeks after the first and the second shot. Results: 7482 subjects adhered to the vaccination campaign and 6681 subjects were vaccinated with ChAdOx1 nCoV-19 vaccine and 137 (fragile subjects) with the BNT162b2 vaccine. The response rate for both questionnaires was high (i.e., >75%). After the first shot, the ChAdOx1 nCoV-19 vaccine caused more fatigue (p < 0.001), headache (p < 0.001), myalgia (p < 0.001), tingles (p = 0.046), fever (p < 0.001), chills (p < 0.001), and insomnia (p = 0.016) than the BNT162b2 vaccine. After the second dose of the BNT162b2 vaccine, more myalgia (p = 0.033), tingles (p = 0.022), and shivers (p < 0.001) than the ChAdOx1 nCoV-19 vaccine were elicited. The side effects were nearly always transient. Severe adverse effects were rare and mostly reported after the first dose of the ChAdOx1 nCoV-19 vaccine. They were dyspnoea (2.3%), blurred vision (2.1%), urticaria (1.3%), and angioedema (0.4%). Conclusions: The adverse effects of both vaccines were transient and, overall, mild in severity.

7.
Bio Protoc ; 13(1): e4587, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789082

RESUMO

Skeletal muscle, one of the most abundant tissue in the body, is a highly regenerative tissue. Indeed, compared to other tissues that are not able to regenerate after injury, skeletal muscle can fully regenerate upon mechanically, chemically, and infection-induced trauma. Several injury models have been developed to thoroughly investigate the physiological mechanisms regulating skeletal muscle regeneration. This protocol describes how to induce muscle regeneration by taking advantage of a cardiotoxin (CTX)-induced muscle injury model. The overall steps include CTX injection of tibialis anterior (TA) muscles of BL6N mice, collection of regenerating muscles at different time points after CTX injury, and histological characterization of regenerating muscles. Our protocol, compared with others such as those for freeze-induced injury models, avoids laceration or infections of the muscles since it involves neither surgery nor suture. In addition, our protocol is highly reproducible, since it causes homogenous myonecrosis of the whole muscle, and further reduces animal pain and stress. Graphical abstract.

8.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179023

RESUMO

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Assuntos
Cálcio , Neurônios Dopaminérgicos , Trifosfato de Adenosina/metabolismo , Ácido Aspártico , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Mitocôndrias/metabolismo , Oxidantes , Substância Negra/metabolismo
9.
Sci Signal ; 14(707): eabf3838, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726954

RESUMO

Damaged skeletal muscle can regenerate because of the coordinated action of immune cells with muscle stem cells, called satellite cells. Proinflammatory macrophages infiltrate skeletal muscle soon after injury to sustain the proliferation of satellite cells. These macrophages later acquire the anti-inflammatory phenotype and promote the differentiation and fusion of satellite cells. Here, we showed that MCUb, the dominant-negative subunit of the mitochondrial calcium uniporter (MCU) complex, promotes muscle regeneration by controlling macrophage responses. Macrophages lacking MCUb lost the ability to efficiently acquire the anti-inflammatory profile, and mice with MCUb-deficient macrophages showed delayed regeneration through exhaustion of the satellite cell pool. MCUb ablation altered macrophage metabolism by promoting glycolysis and the accumulation of TCA cycle intermediates, which was accompanied by the stabilization of HIF-1α, the master transcriptional regulator of the macrophage proinflammatory program. Together, these data demonstrate that MCUb abundance is tightly controlled in macrophages to enable satellite cell functional differentiation and recovery of tissue homeostasis after damage.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo
10.
Cell Rep ; 35(12): 109275, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161774

RESUMO

The mitochondrial calcium uniporter (MCU), the highly selective channel responsible for mitochondrial Ca2+ entry, plays important roles in physiology and pathology. However, only few pharmacological compounds directly and selectively modulate its activity. Here, we perform high-throughput screening on a US Food and Drug Administration (FDA)-approved drug library comprising 1,600 compounds to identify molecules modulating mitochondrial Ca2+ uptake. We find amorolfine and benzethonium to be positive and negative MCU modulators, respectively. In agreement with the positive effect of MCU in muscle trophism, amorolfine increases muscle size, and MCU silencing is sufficient to blunt amorolfine-induced hypertrophy. Conversely, in the triple-negative breast cancer cell line MDA-MB-231, benzethonium delays cell growth and migration in an MCU-dependent manner and protects from ceramide-induced apoptosis, in line with the role of mitochondrial Ca2+ uptake in cancer progression. Overall, we identify amorolfine and benzethonium as effective MCU-targeting drugs applicable to a wide array of experimental and disease conditions.


Assuntos
Canais de Cálcio/metabolismo , United States Food and Drug Administration , Animais , Apoptose/efeitos dos fármacos , Benzetônio/farmacologia , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Cloridrato de Duloxetina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Ensaios de Triagem em Larga Escala , Homeostase/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Estados Unidos
11.
Pharmacol Ther ; 227: 107874, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930454

RESUMO

The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.


Assuntos
Mitocôndrias , Canais de Potássio , Tratamento Farmacológico , Humanos , Mitocôndrias/metabolismo , Canais de Potássio/farmacologia
12.
Oxid Med Cell Longev ; 2019: 1681254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737163

RESUMO

Neurodegenerative diseases are a large and heterogeneous group of disorders characterized by selective and progressive death of specific neuronal subtypes. In most of the cases, the pathophysiology is still poorly understood, although a number of hypotheses have been proposed. Among these, dysregulation of Ca2+ homeostasis and mitochondrial dysfunction represent two broadly recognized early events associated with neurodegeneration. However, a direct link between these two hypotheses can be drawn. Mitochondria actively participate to global Ca2+ signaling, and increases of [Ca2+] inside organelle matrix are known to sustain energy production to modulate apoptosis and remodel cytosolic Ca2+ waves. Most importantly, while mitochondrial Ca2+ overload has been proposed as the no-return signal, triggering apoptotic or necrotic neuronal death, until now direct evidences supporting this hypothesis, especially in vivo, are limited. Here, we took advantage of the identification of the mitochondrial Ca2+ uniporter (MCU) and tested whether mitochondrial Ca2+ signaling controls neuronal cell fate. We overexpressed MCU both in vitro, in mouse primary cortical neurons, and in vivo, through stereotaxic injection of MCU-coding adenoviral particles in the brain cortex. We first measured mitochondrial Ca2+ uptake using quantitative genetically encoded Ca2+ probes, and we observed that the overexpression of MCU causes a dramatic increase of mitochondrial Ca2+ uptake both at resting and after membrane depolarization. MCU-mediated mitochondrial Ca2+ overload causes alteration of organelle morphology and dysregulation of global Ca2+ homeostasis. Most importantly, MCU overexpression in vivo is sufficient to trigger gliosis and neuronal loss. Overall, we demonstrated that mitochondrial Ca2+ overload is per se sufficient to cause neuronal cell death both in vitro and in vivo, thus highlighting a potential key step in neurodegeneration.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Córtex Cerebelar/fisiologia , Gliose/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/fisiologia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Canais de Cálcio/genética , Sinalização do Cálcio , Morte Celular , Córtex Cerebelar/patologia , Vetores Genéticos , Gliose/genética , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/patologia , Regulação para Cima
13.
Nature ; 572(7771): 609-613, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435016

RESUMO

Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Animais , Cardiotônicos/farmacologia , Diazóxido/farmacologia , Fenômenos Eletrofisiológicos , Coração/efeitos dos fármacos , Coração/fisiologia , Precondicionamento Isquêmico Miocárdico , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Fosforilação Oxidativa , Potássio/metabolismo , Canais de Potássio/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
14.
J Clin Endocrinol Metab ; 104(12): 6316-6324, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125081

RESUMO

CONTEXT: The G protein-coupled estrogen receptor (GPER) mediates an aldosterone secretagogue effect of 17ß-estradiol in human HAC15 adrenocortical cells after estrogen receptor ß blockade. Because GPER mediates mineralocorticoid receptor-independent aldosterone effects in other cell types, we hypothesized that aldosterone could modulate its own synthesis via GPER activation. METHODS: HAC15 cells were exposed to aldosterone in the presence or absence of canrenone, a mineralocorticoid receptor antagonist, and/or of the selective GPER antagonist G36. Aldosterone synthase (CYP11B2) mRNA and protein levels changes were the study end points. Similar experiments were repeated in strips obtained ex vivo from aldosterone-producing adenoma (APA) and in GPER-silenced HAC15 cells. RESULTS: Aldosterone markedly increased CYP11B2 mRNA and protein expression (vs untreated samples, P < 0.001) in both models by acting via GPER, because these effects were abolished by G36 (P < 0.01) and not by canrenone. GPER-silencing (P < 0.01) abolished the aldosterone-induced increase of CYP11B2, thus proving that aldosterone acts via GPER to augment the step-limiting mitochondrial enzyme (CYP11B2) of its synthesis. Angiotensin II potentiated the GPER-mediated effect of aldosterone on CYP11B2. Coimmunoprecipitation studies provided evidence for GPER-angiotensin type-1 receptor heterodimerization. CONCLUSION: We propose that this autocrine-paracrine mechanism could enhance aldosterone biosynthesis under conditions of immediate physiological need in which the renin-angiotensin-aldosterone system is stimulated as, for example, hypovolemia. Moreover, as APA overexpresses GPER this mechanism could contribute to the aldosterone excess that occurs in primary aldosteronism in a seemingly autonomous fashion from angiotensin II.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Adenoma Adrenocortical/metabolismo , Aldosterona/farmacologia , Citocromo P-450 CYP11B2/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/patologia , Adenoma Adrenocortical/tratamento farmacológico , Adenoma Adrenocortical/patologia , Aldosterona/biossíntese , Benzodioxóis/farmacologia , Cálcio/metabolismo , Canrenona/farmacologia , Citocromo P-450 CYP11B2/genética , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Quinolinas/farmacologia , Receptor Tipo 1 de Angiotensina/genética , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Células Tumorais Cultivadas
15.
Arterioscler Thromb Vasc Biol ; 38(10): 2484-2497, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354220

RESUMO

Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.


Assuntos
Receptores ErbB/metabolismo , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Artérias Mesentéricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Canais de Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Canais de Cátion TRPM/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Vasoconstrição/efeitos dos fármacos
16.
PLoS One ; 13(4): e0196580, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29709004

RESUMO

Mitochondrial Ca2+ is a key regulator of organelle physiology and the excessive increase in mitochondrial calcium is associated with the oxidative stress. In the present study, we investigated the molecular mechanisms linking mitochondrial calcium to inflammatory and coagulative responses in hepatocytes exposed to high glucose (HG) (33mM glucose). Treatment of HepG2 cells with HG for 24 h induced insulin resistance, as demonstrated by an impairment of insulin-stimulated Akt phosphorylation. HepG2 treatment with HG led to an increase in mitochondrial Ca2+ uptake, while cytosolic calcium remained unchanged. Inhibition of MCU by lentiviral-mediated shRNA prevented mitochondrial calcium uptake and downregulated the inflammatory (TNF-α, IL-6) and coagulative (PAI-1 and FGA) mRNA expression in HepG2 cells exposed to HG. The protection from HG-induced inflammation by MCU inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). Importantly, MCU inhibition in HepG2 cells abrogated the phosphorylation of p38, JNK and IKKα/IKKß in HG treated cells. Taken together, these data suggest that MCU inhibition may represent a promising therapy for prevention of deleterious effects of obesity and metabolic diseases.


Assuntos
Canais de Cálcio/metabolismo , Glucose/química , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Cálcio/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Inflamação , Resistência à Insulina , Mitocôndrias/metabolismo , Obesidade/terapia , Estresse Oxidativo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Arch Physiol Biochem ; 124(5): 468-474, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29364751

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of high glucose (HG) on inflammation in HepG2 cells. METHODS: The molecular mechanisms linking HG to inflammation was assessed in HepG2 cells exposed to HG (33 mM). RESULTS: The results showed that HG significantly enhanced TNF-α, IL-6 and PAI-1 expression in HepG2 cells. Increased expression of cytokines was accompanied by enhanced phosphorylation of JNK, P38, ERK and IKKα/IKKß. In addition, JNK, ERK, P38 and NF-kB inhibitors could significantly attenuate HG-induced expression of TNF-α, IL-6 and PAI-1. Furthermore, HG could promote the generation of reactive oxygen species (ROS), while N-acetyl cysteine, a ROS scavenger, had an inhibitory effect on the expression of TNF-α, IL-6 and PAI-1 in HG-treated cells. CONCLUSIONS: Our results indicated that HG-induced inflammation is mediated through the generation of ROS and activation of the MAPKs and NF-kB signalling pathways in HepG2 cells.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/agonistas , Estresse Oxidativo , Fator de Necrose Tumoral alfa/agonistas , Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/efeitos adversos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/patologia , Humanos , Hiperglicemia/imunologia , Hiperglicemia/patologia , Interleucina-6/agonistas , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Concentração Osmolar , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/agonistas , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Am J Physiol Endocrinol Metab ; 313(6): E641-E650, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790027

RESUMO

Intracellular calcium influences an array of pathways and affects cellular processes. With the rapidly progressing research investigating the molecular identity and the physiological roles of the mitochondrial calcium uniporter (MCU) complex, we now have the tools to understand the functions of mitochondrial Ca2+ in the regulation of pathophysiological processes. Herein, we describe the role of key MCU complex components in insulin resistance in mouse and human adipose tissue. Adipose tissue gene expression was analyzed from several models of obese and diabetic rodents and in 72 patients with obesity as well as in vitro insulin-resistant adipocytes. Genetic manipulation of MCU activity in 3T3-L1 adipocytes allowed the investigation of the role of mitochondrial calcium uptake. In insulin-resistant adipocytes, mitochondrial calcium uptake increased and several MCU components were upregulated. Similar results were observed in mouse and human visceral adipose tissue (VAT) during the progression of obesity and diabetes. Intriguingly, subcutaneous adipose tissue (SAT) was spared from overt MCU fluctuations. Furthermore, MCU expression returned to physiological levels in VAT of patients after weight loss by bariatric surgery. Genetic manipulation of mitochondrial calcium uptake in 3T3-L1 adipocytes demonstrated that changes in mitochondrial calcium concentration ([Ca2+]mt) can affect mitochondrial metabolism, including oxidative enzyme activity, mitochondrial respiration, membrane potential, and reactive oxygen species formation. Finally, our data suggest a strong relationship between [Ca2+]mt and the release of IL-6 and TNFα in adipocytes. Altered mitochondrial calcium flux in fat cells may play a role in obesity and diabetes and may be associated with the differential metabolic profiles of VAT and SAT.


Assuntos
Adipócitos/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Células 3T3-L1 , Adulto , Animais , Estudos de Casos e Controles , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Gordura Subcutânea/metabolismo , Gordura Subcutânea/patologia
19.
Sci Rep ; 7(1): 6283, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740219

RESUMO

p66shc is a growth factor adaptor protein that contributes to mitochondrial ROS production. p66shc is involved in insulin signaling and its deletion exerts a protective effect against diet-induced obesity. In light of the role of skeletal muscle activity in the control of systemic metabolism and obesity, we investigated which is the contribution of p66shc in regulating muscle structure and function. Here, we show that p66shc-/- muscles are undistinguishable from controls in terms of size, resistance to denervation-induced atrophy, and force. However, p66shc-/- mice perform slightly better than wild type animals during repetitive downhill running. Analysis of the effects after placing mice on a high fat diet (HFD) regimen demonstrated that running distance is greatly reduced in obese wild type animals, but not in overweight-resistant p66shc-/- mice. In addition, muscle force measured after exercise decreases upon HFD in wild type mice while p66shc-/- animals are protected. Our data indicate that p66shc affect the response to damage of adult muscle in chow diet, and it determines the maintenance of muscle force and exercise performance upon a HFD regimen.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/fisiologia , Animais , Metabolismo Energético , Tolerância ao Exercício , Feminino , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Front Oncol ; 7: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740830

RESUMO

Mitochondrial Ca2+ uptake plays a pivotal role both in cell energy balance and in cell fate determination. Studies on the role of mitochondrial Ca2+ signaling in pathophysiology have been favored by the identification of the genes encoding the mitochondrial calcium uniporter (MCU) and its regulatory subunits. Thus, research carried on in the last years on one hand has determined the structure of the MCU complex and its regulation, on the other has uncovered the consequences of dysregulated mitochondrial Ca2+ signaling in cell and tissue homeostasis. Whether mitochondrial Ca2+ uptake can be exploited as a weapon to counteract cancer progression is debated. In this review, we summarize recent research on the molecular structure of the MCU, the regulatory mechanisms that control its activity and its relevance in pathophysiology, focusing in particular on its role in cancer progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA