Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Med ; 29(3): 632-645, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928817

RESUMO

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Linfócitos T Reguladores , Imunoterapia/efeitos adversos , Microambiente Tumoral/genética
2.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854569

RESUMO

BACKGROUND: Approximately one-third of diffuse large B cell lymphoma (DLBCL) patients exhibit co-expression of MYC and BCL2 (double-expressor lymphoma, DEL) and have a dismal prognosis. Targeted inhibition of the anti-apoptotic protein BCL2 with venetoclax (ABT-199) has been approved in multiple B-cell malignancies and is currently being investigated in clinical trials for DLBCL. Whether BCL2 anti-apoptotic function represents a multifaceted vulnerability for DEL-DLBCL, affecting both lymphoma B cells and T cells within the tumor microenvironment, remains to be elucidated. METHODS: Here, we present novel genetically engineered mice that preclinically recapitulate DEL-DLBCL lymphomagenesis, and evaluate their sensitivity ex vivo and in vivo to the promising combination of venetoclax with anti-CD20-based standard immunotherapy. RESULTS: Venetoclax treatment demonstrated specific killing of MYC+/BCL2+ lymphoma cells by licensing their intrinsically primed apoptosis, and showed previously unrecognized immunomodulatory activity by specifically enriching antigen-activated effector CD8 T cells infiltrating the tumors. Whereas DEL-DLBCL mice were refractory to venetoclax alone, inhibition of BCL2 significantly extended overall survival of mice that were simultaneously treated with a murine surrogate for anti-CD20 rituximab. CONCLUSIONS: These results suggest that the combination of anti-CD20-based immunotherapy and BCL2 inhibition leads to cooperative immunomodulatory effects and improved preclinical responses, which may offer promising therapeutic opportunities for DEL-DLBCL patients.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Imunoterapia , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Modelos Animais de Doenças , Imunoterapia/métodos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-myc
3.
Front Immunol ; 13: 1011607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561744

RESUMO

Bronchiolitis in children is associated with significant rates of morbidity and mortality. Many studies have been performed using samples from hospitalized bronchiolitis patients, but little is known about the immunological responses from infants suffering from mild/moderate bronchiolitis that do not require hospitalization. We have studied a collection of nasal lavage fluid (NLF) samples from outpatient bronchiolitis children as a novel strategy to unravel local humoral and cellular responses, which are not fully characterized. The children were age-stratified in three groups, two of them (GI under 2-months, GII between 2-4 months) presenting a first episode of bronchiolitis, and GIII (between 4 months and 2 years) with recurrent respiratory infections. Here we show that elevated levels of pro-inflammatory cytokines (IL1ß, IL6, TNFα, IL18, IL23), regulatory cytokines (IL10, IL17A) and IFNγ were found in the three bronchiolitis cohorts. However, little or no change was observed for IL33 and MCP1, at difference to previous results from bronchiolitis hospitalized patients. Furthermore, our results show a tendency to IL1ß, IL6, IL18 and TNFα increased levels in children with mild pattern of symptom severity and in those in which non RSV respiratory virus were detected compared to RSV+ samples. By contrast, no such differences were found based on gender distribution. Bronchiolitis NLFs contained more IgM, IgG1, IgG3 IgG4 and IgA than NLF from their age-matched healthy controls. NLF from bronchiolitis children predominantly contained neutrophils, and also low frequency of monocytes and few CD4+ and CD8+ T cells. NLF from infants older than 4-months contained more intermediate monocytes and B cell subsets, including naïve and memory cells. BCR repertoire analysis of NLF samples showed a biased VH1 usage in IgM repertoires, with low levels of somatic hypermutation. Strikingly, algorithmic studies of the mutation profiles, denoted antigenic selection on IgA-NLF repertoires. Our results support the use of NLF samples to analyze immune responses and may have therapeutic implications.


Assuntos
Bronquiolite Viral , Criança , Humanos , Lactente , Bronquiolite Viral/imunologia , Bronquiolite Viral/virologia , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Imunidade , Imunoglobulina A/análise , Imunoglobulina M/análise , Fator de Necrose Tumoral alfa , Vírus/isolamento & purificação
4.
Nucleic Acids Res ; 50(14): 8093-8106, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849338

RESUMO

DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1-/- and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1-/- mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1-/- mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1-/- mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1-/- mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1-/- mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.


Assuntos
Enzimas Reparadoras do DNA , Reparo do DNA , Exodesoxirribonucleases , Neoplasias , Animais , Linfócitos B , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Imunidade , Meiose/genética , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Hipermutação Somática de Imunoglobulina
6.
Cancers (Basel) ; 13(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572910

RESUMO

Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.

7.
Blood Adv ; 4(5): 893-905, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32150608

RESUMO

Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfócitos B , Metilação de DNA , Humanos , Leucemia Linfocítica Crônica de Células B/genética
8.
World Allergy Organ J ; 12(8): 100047, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31384359

RESUMO

BACKGROUND: Small non-coding RNAs (snRNAs) develop important functions related to epigenetic regulation. YRNAs are snRNAs involved in the initiation of DNA replication and RNA stability that regulate gene expression. They have been related to autoimmune, cancer and inflammatory diseases but never before to allergy. In this work we described for the first time in allergic patients the differential expression profile of YRNAs, their regulatory mechanisms and their potential as new diagnostic and therapeutic targets. METHODS: From a previous whole RNAseq study in B cells of allergic patients, differential expression profiles of coding and non-coding transcripts were obtained. To select the most differentially expressed non coding transcripts, fold change and p-values were analyzed. A validation of the expression differences detected was developed in an independent cohort of 304 individuals, 208 allergic patients and 96 controls by using qPCR. Potential binding and retrotransponibility capacity were characterized by in silico structural analysis. Using a novel bioinformatics approach, RNA targets identification, functional enrichment and network analyses were performed. RESULTS: We found that almost 70% of overexpressed non-coding transcripts in allergic patients corresponded to YRNAs. From the three more differentially overexpressed candidates, increased expression was independently confirmed in the peripheral blood of allergic patients. Structural analysis suggested a protein binding capacity decrease and an increase in retrotransponibility. Studies of RNA targets allowed the identification of sequences related to the immune mechanisms underlying allergy. CONCLUSIONS: Overexpression of YRNAs is observed for the first time in allergic patients. Structural and functional information points to their implication on regulatory mechanisms of the disease.

9.
Blood ; 133(22): 2401-2412, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975638

RESUMO

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


Assuntos
Linfócitos B/imunologia , Antígeno B7-H1/imunologia , Regulação Neoplásica da Expressão Gênica , Ativação Linfocitária , Linfoma Difuso de Grandes Células B/imunologia , Receptor de Morte Celular Programada 1/imunologia , Evasão Tumoral , Proteína Supressora de Tumor p53/imunologia , Animais , Linfócitos B/patologia , Antígeno B7-H1/genética , Feminino , Humanos , Imunoterapia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Masculino , Camundongos , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/genética , Linfócitos T/imunologia , Linfócitos T/patologia , Proteína Supressora de Tumor p53/genética
10.
J Med Chem ; 61(15): 6546-6573, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890830

RESUMO

Epigenetic regulators that exhibit aberrant enzymatic activities or expression profiles are potential therapeutic targets for cancers. Specifically, enzymes responsible for methylation at histone-3 lysine-9 (like G9a) and aberrant DNA hypermethylation (DNMTs) have been implicated in a number of cancers. Recently, molecules bearing a 4-aminoquinoline scaffold were reported as dual inhibitors of these targets and showed a significant in vivo efficacy in animal models of hematological malignancies. Here, we report a detailed exploration around three growing vectors born by this chemotype. Exploring this chemical space led to the identification of features to navigate G9a and DNMT1 biological spaces: not only their corresponding exclusive areas, selective compounds, but also common spaces. Thus, we identified from selective G9a and first-in-class DNMT1 inhibitors, >1 log unit between their IC50 values, with IC50 < 25 nM (e.g., 43 and 26, respectively) to equipotent inhibitors with IC50 < 50 nM for both targets (e.g., 13). Their ADME/Tox profiling and antiproliferative efficacies, versus some cancer cell lines, are also reported.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Desenho de Fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Aminoquinolinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/metabolismo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Conformação Proteica
11.
J Med Chem ; 61(15): 6518-6545, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953809

RESUMO

Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear antiproliferative efficacies (GI50 values in the nanomolar range). On the basis of epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept ( Nat. Commun. 2017 , 8 , 15424 ). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human acute myeloid leukemia (AML) xenograft in a mouse model.


Assuntos
Antineoplásicos/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Pathol ; 245(1): 61-73, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29464716

RESUMO

The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV- tumours, EBV+ DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV+ DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV+ DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2-/- IL2γc-/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV+ B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV+ DLBCL in patients. Accordingly, clonally related and unrelated EBV+ DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV+ DLBCL. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Herpesvirus Humano 4/efeitos dos fármacos , Imunossupressores/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Adulto , Idoso , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Masculino , Pessoa de Meia-Idade
13.
Nat Commun ; 8: 15424, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548080

RESUMO

The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.


Assuntos
Antineoplásicos/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cristalografia por Raios X , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/mortalidade , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interferons/imunologia , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Análise de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Blood ; 129(17): 2408-2419, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28188132

RESUMO

Non-Hodgkin lymphoma comprises a variety of neoplasms, many of which arise from germinal center (GC)-experienced B cells. microRNA-28 (miR-28) is a GC-specific miRNA whose expression is lost in numerous mature B-cell neoplasms. Here we show that miR-28 regulates the GC reaction in primary B cells by impairing class switch recombination and memory B and plasma cell differentiation. Deep quantitative proteomics combined with transcriptome analysis identified miR-28 targets involved in cell-cycle and B-cell receptor signaling. Accordingly, we found that miR-28 expression diminished proliferation in primary and lymphoma cells in vitro. Importantly, miR-28 reexpression in human Burkitt (BL) and diffuse large B-cell lymphoma (DLBCL) xenografts blocked tumor growth, both when delivered in viral vectors or as synthetic, clinically amenable, molecules. Further, the antitumoral effect of miR-28 is conserved in a primary murine in vivo model of BL. Thus, miR-28 replacement is uncovered as a novel therapeutic strategy for DLBCL and BL treatment.


Assuntos
Linfócitos B/imunologia , Linfoma de Burkitt/terapia , Regulação Neoplásica da Expressão Gênica , Centro Germinativo/imunologia , Linfoma Difuso de Grandes Células B/terapia , MicroRNAs/genética , Animais , Linfócitos B/patologia , Linfoma de Burkitt/genética , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Diferenciação Celular , Proliferação de Células , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Centro Germinativo/patologia , Humanos , Switching de Imunoglobulina , Memória Imunológica , Lentivirus/genética , Lentivirus/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/imunologia , Plasmócitos/imunologia , Plasmócitos/patologia , Proteômica , Transcriptoma , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Commun ; 7: 11889, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27297662

RESUMO

NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas.


Assuntos
Proteínas de Homeodomínio/genética , Linfócitos/metabolismo , Linfoma de Zona Marginal Tipo Células B/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Tecido Linfoide/metabolismo , Linfoma de Zona Marginal Tipo Células B/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Receptores de Antígenos de Linfócitos B/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Fatores de Transcrição/metabolismo
16.
Br J Haematol ; 162(5): 621-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23795761

RESUMO

We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6. Gain- and loss-of-function experiments in different B-cell lymphoma cell lines revealed that, in contrast to its function in monocytes, LITAF does not induce lipopolysaccharide-mediated TNF secretion in B cells. However, gene expression microarrays defined a LITAF-related transcriptional signature containing genes regulating autophagy, including MAP1LC3B (LC3B). In addition, immunofluorescence analysis co-localized LITAF with autophagosomes, further suggesting a possible role in autophagy modulation. Accordingly, ectopic LITAF expression in B-cell lymphoma cells enhanced autophagy responses to starvation, which were impaired upon LITAF silencing. Our results indicate that the BCL6-mediated transcriptional repression of LITAF may inhibit autophagy in B cells during the germinal centre reaction, and suggest that the constitutive repression of autophagy responses in BCL6-driven lymphomas may contribute to lymphomagenesis.


Assuntos
Autofagia/genética , Linfoma de Células B/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Íntrons , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(27): E2470-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754438

RESUMO

Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1(EK)) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1(null)) mouse. In contrast to Exo1(null/null) mice, Exo1(EK/EK) mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1(null) mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Reparo do DNA por Junção de Extremidades/genética , Reparo de Erro de Pareamento de DNA/genética , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Feminino , Masculino , Meiose/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Homologia de Sequência de Aminoácidos
18.
Blood ; 121(21): 4311-20, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23580662

RESUMO

B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Centro Germinativo/citologia , Linfoma/imunologia , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/imunologia , Fatores de Transcrição Forkhead/imunologia , Centro Germinativo/imunologia , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Transgênicos , Tonsila Palatina/citologia , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Repressoras/imunologia , Ativação Transcricional/imunologia
19.
Blood ; 120(24): 4802-11, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23071276

RESUMO

Clonal evolution occurs during the course of chronic lymphocytic leukemia (CLL) and activation-induced deaminase (AID) could influence this process. However, this possibility has been questioned in CLL because the number of circulating AID mRNA(+) cells is exceedingly low; synthesis of AID protein by blood CLL cells has not been demonstrated; the full range of AID functions is lacking in unmutated CLL (U-CLL), and no prospective analysis linking AID expression and disease severity has been reported. The results of the present study show that circulating CLL cells and those within secondary lymphoid tissues can make AID mRNA and protein. This production is related to cell division because more AID mRNA was detected in recently divided cells and AID protein was limited to the dividing fraction and was up-regulated on induction of cell division. AID protein was functional because AID(+) dividing cells exhibited more double-stranded DNA breaks, IGH class switching, and new IGHV-D-J mutations. Each of these actions was documented in U-CLL and mutated CLL (M-CLL). Furthermore, AID protein was associated with worse patient outcome and adverse cytogenetics. We conclude that the production of fully functional AID protein by U-CLL and M-CLL cells could be involved in clonal evolution of the disease.


Assuntos
Citidina Desaminase/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Sequência de Bases , Divisão Celular/genética , Células Cultivadas , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Switching de Imunoglobulina/genética , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Células Tumorais Cultivadas
20.
J Exp Med ; 209(4): 671-8, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22451719

RESUMO

Antibody diversification through somatic hypermutation (SHM) and class switch recombination (CSR) are similarly initiated in B cells with the generation of U:G mismatches by activation-induced cytidine deaminase but differ in their subsequent mutagenic consequences. Although SHM relies on the generation of nondeleterious point mutations, CSR depends on the production of DNA double-strand breaks (DSBs) and their adequate recombination through nonhomologous end joining (NHEJ). MLH1, an ATPase member of the mismatch repair (MMR) machinery, is emerging as a likely regulator of whether a U:G mismatch progresses toward mutation or DSB formation. We conducted experiments on cancer modeled ATPase-deficient MLH1G67R knockin mice to determine the function that the ATPase domain of MLH1 mediates in SHM and CSR. Mlh1(GR/GR) mice displayed a significant decrease in CSR, mainly attributed to a reduction in the generation of DSBs and diminished accumulation of 53BP1 at the immunoglobulin switch regions. However, SHM was normal in these mice, which distinguishes MLH1 from upstream members of the MMR pathway and suggests a very specific role of its ATPase-dependent functions during CSR. In addition, we show that the residual switching events still taking place in Mlh1(GR/GR) mice display unique features, suggesting a role for the ATPase activity of MLH1 beyond the activation of the endonuclease functions of its MMR partner PMS2. A preference for switch junctions with longer microhomologies in Mlh1(GR/GR) mice suggests that through its ATPase activity, MLH1 also has an impact in DNA end processing, favoring canonical NHEJ downstream of the DSB. Collectively, our study shows that the ATPase domain of MLH1 is important to transmit the CSR signaling cascade both upstream and downstream of the generation of DSBs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adenosina Trifosfatases/metabolismo , Quebras de DNA de Cadeia Dupla , Switching de Imunoglobulina/genética , Proteínas Nucleares/fisiologia , Recombinação Genética , Animais , Linfócitos B/imunologia , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Camundongos , Proteína 1 Homóloga a MutL , Hipermutação Somática de Imunoglobulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA