Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742646

RESUMO

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Assuntos
Doença de Alzheimer , Insulinas , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amiloide , Proteínas Amiloidogênicas , Dieta com Restrição de Carboidratos , Carboidratos , Atrofia/complicações
2.
Nat Commun ; 6: 8829, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26681308

RESUMO

Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, 'FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility.


Assuntos
Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/enzimologia , Mutação de Sentido Incorreto , Hidrolases Anidrido Ácido , Sequência de Bases , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Humanos , Masculino , Dados de Sequência Molecular , Recombinação Genética , Adulto Jovem
3.
Am J Hum Genet ; 97(3): 475-82, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26299364

RESUMO

Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder.


Assuntos
Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Dermatoses do Couro Cabeludo/congênito , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação ao Cálcio , Heterozigoto , Humanos , Dados de Sequência Molecular , Linhagem , Receptores Notch/genética , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/patologia , Análise de Sequência de DNA
4.
PLoS One ; 10(5): e0127045, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996915

RESUMO

Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clusteredin exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K(26%) and 11 had G947R (8%) mutations [corrected].Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.


Assuntos
Hemiplegia/genética , ATPase Trocadora de Sódio-Potássio/genética , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Hemiplegia/fisiopatologia , Humanos , Lactente , Masculino , Sistema de Registros
6.
Genome Med ; 6(9): 73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473435

RESUMO

Genomic information reported as haplotypes rather than genotypes will be increasingly important for personalized medicine. Current technologies generate diploid sequence data that is rarely resolved into its constituent haplotypes. Furthermore, paradigms for thinking about genomic information are based on interpreting genotypes rather than haplotypes. Nevertheless, haplotypes have historically been useful in contexts ranging from population genetics to disease-gene mapping efforts. The main approaches for phasing genomic sequence data are molecular haplotyping, genetic haplotyping, and population-based inference. Long-read sequencing technologies are enabling longer molecular haplotypes, and decreases in the cost of whole-genome sequencing are enabling the sequencing of whole-chromosome genetic haplotypes. Hybrid approaches combining high-throughput short-read assembly with strategic approaches that enable physical or virtual binning of reads into haplotypes are enabling multi-gene haplotypes to be generated from single individuals. These techniques can be further combined with genetic and population approaches. Here, we review advances in whole-genome haplotyping approaches and discuss the importance of haplotypes for genomic medicine. Clinical applications include diagnosis by recognition of compound heterozygosity and by phasing regulatory variation to coding variation. Haplotypes, which are more specific than less complex variants such as single nucleotide variants, also have applications in prognostics and diagnostics, in the analysis of tumors, and in typing tissue for transplantation. Future advances will include technological innovations, the application of standard metrics for evaluating haplotype quality, and the development of databases that link haplotypes to disease.

7.
Am J Hum Genet ; 95(3): 275-84, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25132448

RESUMO

Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.


Assuntos
Anormalidades Múltiplas/genética , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Receptor Notch1/genética , Dermatoses do Couro Cabeludo/congênito , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Linhagem , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/patologia , Adulto Jovem
8.
Am J Med Genet A ; 164A(10): 2656-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25091416

RESUMO

Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature. Elucidated genetic causes include four genes in different pathways, leading to a model of AOS as a multi-pathway disorder. We identified an infant with mild aplasia cutis congenita and terminal transverse limb defects, developmental delay and a severe, diffuse angiopathy with incomplete microvascularization. Whole-genome sequencing documented two rare truncating variants in DOCK6, a gene associated with a type of autosomal recessive AOS that recurrently features periventricular calcification and impaired neurodevelopment. We highlight an unexpectedly high frequency of likely deleterious mutations in this gene in the general population, relative to the rarity of the disease, and discuss possible explanations for this discrepancy.


Assuntos
Displasia Ectodérmica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deformidades Congênitas dos Membros/genética , Mutação/genética , Dermatoses do Couro Cabeludo/congênito , Anormalidades Múltiplas/genética , Feminino , Genes Recessivos/genética , Humanos , Recém-Nascido , Dermatoses do Couro Cabeludo/genética
9.
PLoS Comput Biol ; 4(3): e1000021, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18369420

RESUMO

Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Motivos de Aminoácidos , Animais , Simulação por Computador , Regulação da Expressão Gênica/fisiologia , Humanos , Cinética , Relação Estrutura-Atividade , Integração de Sistemas
10.
Proc Natl Acad Sci U S A ; 104(41): 16245-50, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17913878

RESUMO

Transcription factors play a key role in integrating and modulating biological information. In this study, we comprehensively measured the changing abundances of mRNAs over a time course of activation of human peripheral-blood-derived mononuclear cells ("macrophages") with lipopolysaccharide. Global and dynamic analysis of transcription factors in response to a physiological stimulus has yet to be achieved in a human system, and our efforts significantly advanced this goal. We used multiple global high-throughput technologies for measuring mRNA levels, including massively parallel signature sequencing and GeneChip microarrays. We identified 92 of 1,288 known human transcription factors as having significantly measurable changes during our 24-h time course. At least 42 of these changes were previously unidentified in this system. Our data demonstrate that some transcription factors operate in a functional range below 10 transcripts per cell, whereas others operate in a range three orders of magnitude greater. The highly reproducible response of many mRNAs indicates feedback control. A broad range of activation kinetics was observed; thus, combinatorial regulation by small subsets of transcription factors would permit almost any timing input to cis-regulatory elements controlling gene transcription.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Fatores de Transcrição/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Biologia de Sistemas
11.
Nature ; 441(7090): 173-8, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16688168

RESUMO

The innate immune system is absolutely required for host defence, but, uncontrolled, it leads to inflammatory disease. This control is mediated, in part, by cytokines that are secreted by macrophages. Immune regulation is extraordinarily complex, and can be best investigated with systems approaches (that is, using computational tools to predict regulatory networks arising from global, high-throughput data sets). Here we use cluster analysis of a comprehensive set of transcriptomic data derived from Toll-like receptor (TLR)-activated macrophages to identify a prominent group of genes that appear to be regulated by activating transcription factor 3 (ATF3), a member of the CREB/ATF family of transcription factors. Network analysis predicted that ATF3 is part of a transcriptional complex that also contains members of the nuclear factor (NF)-kappaB family of transcription factors. Promoter analysis of the putative ATF3-regulated gene cluster demonstrated an over-representation of closely apposed ATF3 and NF-kappaB binding sites, which was verified by chromatin immunoprecipitation and hybridization to a DNA microarray. This cluster included important cytokines such as interleukin (IL)-6 and IL-12b. ATF3 and Rel (a component of NF-kappaB) were shown to bind to the regulatory regions of these genes upon macrophage activation. A kinetic model of Il6 and Il12b messenger RNA expression as a function of ATF3 and NF-kappaB promoter binding predicted that ATF3 is a negative regulator of Il6 and Il12b transcription, and this hypothesis was validated using Atf3-null mice. ATF3 seems to inhibit Il6 and Il12b transcription by altering chromatin structure, thereby restricting access to transcription factors. Because ATF3 is itself induced by lipopolysaccharide, it seems to regulate TLR-stimulated inflammatory responses as part of a negative-feedback loop.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biologia de Sistemas , Receptor 4 Toll-Like/antagonistas & inibidores , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Análise por Conglomerados , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Elementos de Resposta/genética , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
12.
BMC Cancer ; 5: 86, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-16042785

RESUMO

BACKGROUND: Affymetrix GeneChip Array and Massively Parallel Signature Sequencing (MPSS) are two high throughput methodologies used to profile transcriptomes. Each method has certain strengths and weaknesses; however, no comparison has been made between the data derived from Affymetrix arrays and MPSS. In this study, two lineage-related prostate cancer cell lines, LNCaP and C4-2, were used for transcriptome analysis with the aim of identifying genes associated with prostate cancer progression. METHODS: Affymetrix GeneChip array and MPSS analyses were performed. Data was analyzed with GeneSpring 6.2 and in-house perl scripts. Expression array results were verified with RT-PCR. RESULTS: Comparison of the data revealed that both technologies detected genes the other did not. In LNCaP, 3,180 genes were only detected by Affymetrix and 1,169 genes were only detected by MPSS. Similarly, in C4-2, 4,121 genes were only detected by Affymetrix and 1,014 genes were only detected by MPSS. Analysis of the combined transcriptomes identified 66 genes unique to LNCaP cells and 33 genes unique to C4-2 cells. Expression analysis of these genes in prostate cancer specimens showed CA1 to be highly expressed in bone metastasis but not expressed in primary tumor and EPHA7 to be expressed in normal prostate and primary tumor but not bone metastasis. CONCLUSION: Our data indicates that transcriptome profiling with a single methodology will not fully assess the expression of all genes in a cell line. A combination of transcription profiling technologies such as DNA array and MPSS provides a more robust means to assess the expression profile of an RNA sample. Finally, genes that were differentially expressed in cell lines were also differentially expressed in primary prostate cancer and its metastases.


Assuntos
Regulação Neoplásica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Masculino , Modelos Estatísticos , Neoplasias da Próstata/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA