Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(5): 5, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696189

RESUMO

Purpose: Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods: The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results: The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions: Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.


Assuntos
Doença de Alzheimer , Gliose , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Humanos , Gliose/patologia , Gliose/diagnóstico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Tomografia de Coerência Óptica/métodos , Idoso , Feminino , Masculino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Células Ganglionares da Retina/patologia , Fibras Nervosas/patologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Retina/patologia , Retina/diagnóstico por imagem
2.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35697511

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with synaptic dysfunction and dendritic spine loss and the pathologic hallmarks of ß-amyloid (Aß) plaques and hyperphosphorylated tau tangles. 14-3-3 proteins are a highly conserved family of proteins whose functions include regulation of protein folding, neuronal architecture, and synaptic function. Additionally, 14-3-3s interact with both Aß and tau, and reduced levels of 14-3-3s have been shown in the brains of AD patients and in AD mouse models. Here, we examine the neuroprotective potential of the 14-3-3θ isoform in AD models. We demonstrate that 14-3-3θ overexpression is protective and 14-3-3θ inhibition is detrimental against oligomeric Aß-induced neuronal death in primary cortical cultures. Overexpression of 14-3-3θ using an adeno-associated viral (AAV) vector failed to improve performance on behavioral tests, improve Aß pathology, or affect synaptic density in the J20 AD mouse model. Similarly, crossing a second AD mouse model, the AppNL-G-F knock-in (APP KI) mouse, with 14-3-3θ transgenic mice failed to rescue behavioral deficits, reduce Aß pathology, or impact synaptic density in the APP KI mouse model. 14-3-3θ is likely partially insolubilized in the APP models, as demonstrated by proteinase K digestion. These findings do not support increasing 14-3-3θ expression as a therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
3.
J Nucl Med ; 63(2): 287-293, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34049986

RESUMO

Measuring amyloid and predicting tau status using a single amyloid PET study would be valuable for assessing brain AD pathophysiology. We hypothesized that early-frame amyloid PET (efAP) correlates with the presence of tau pathology because the initial regional brain concentrations of radioactivity are determined primarily by blood flow, which is expected to be decreased in the setting of tau pathology. Methods: The study included 120 participants (63 amyloid-positive and 57 amyloid-negative) with dynamic 18F-florbetapir PET and static 18F-flortaucipir PET scans obtained within 6 mo of each other. These subjects were predominantly cognitively intact in both the amyloid-positive (63%) and the amyloid-negative (93%) groups. Parameters for efAP quantification were optimized for stratification of tau PET positivity, assessed by either a tauopathy score or Braak regions. The ability of efAP to stratify tau positivity was measured using receiver-operating-characteristic analysis of area under the curve (AUC). Pearson r and Spearman ρ were used for parametric and nonparametric comparisons between efAP and tau PET, respectively. Standardized net benefit was used to evaluate improvement in using efAP as an additional copredictor over hippocampal volume in predicting tau PET positivity. Results: Measuring efAP within the hippocampus and summing the first 3 min of brain activity after injection showed the strongest discriminative ability to stratify for tau positivity (AUC, 0.67-0.89 across tau PET Braak regions) in amyloid-positive individuals. Hippocampal efAP correlated significantly with a global tau PET tauopathy score in amyloid-positive participants (r = -0.57, P < 0.0001). Compared with hippocampal volume, hippocampal efAP showed a stronger association with tau PET Braak stage (ρ = -0.58 vs. -0.37) and superior stratification of tau PET tauopathy score (AUC, 0.86 vs. 0.66; P = 0.002). Conclusion: Hippocampal efAP can provide additional information to conventional amyloid PET, including estimation of the likelihood of tau positivity in amyloid-positive individuals.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Tauopatias , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/análise , Proteínas Amiloidogênicas , Carbolinas , Humanos , Tomografia por Emissão de Pósitrons , Tauopatias/patologia , Proteínas tau
4.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657270

RESUMO

Genome-wide association studies identified the BIN1 locus as a leading modulator of genetic risk in Alzheimer's disease (AD). One limitation in understanding BIN1's contribution to AD is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely change expression. Here, we determined the effects of increasing expression of the major neuronal isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted with L-type voltage-gated calcium channels (LVGCCs) and that BIN1-LVGCC interactions were modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented BIN1-induced network hyperexcitability. These data shed light on BIN1's neuronal function and suggest that it may contribute to Tau-dependent hyperexcitability in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor/metabolismo
5.
Am J Hum Genet ; 106(5): 632-645, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330418

RESUMO

We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Mutação com Perda de Função/genética , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Cognição , Dioxigenases , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Camundongos
6.
Neurobiol Dis ; 134: 104668, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698056

RESUMO

The microtubule-associated protein Tau is strongly implicated in Alzheimer's disease (AD) and aggregates into neurofibrillary tangles in AD. Genetic reduction of Tau is protective in several animal models of AD and cell culture models of amyloid-ß (Aß) toxicity, making it an exciting therapeutic target for treating AD. A variety of evidence indicates that Tau's interactions with Fyn kinase and other SH3 domain-containing proteins, which bind to PxxP motifs in Tau's proline-rich domain, may contribute to AD deficits and Aß toxicity. Thus, we sought to determine if inhibiting Tau-SH3 interactions ameliorates Aß toxicity. We developed a peptide inhibitor of Tau-SH3 interactions and a proximity ligation assay (PLA)-based target engagement assay. Then, we used membrane trafficking and neurite degeneration assays to determine if inhibiting Tau-SH3 interactions ameliorated Aß oligomer (Aßo)-induced toxicity in primary hippocampal neurons from rats. We verified that Tau reduction ameliorated Aßo toxicity in neurons. Using PLA, we identified a peptide inhibitor that reduced Tau-SH3 interactions in HEK-293 cells and primary neurons. This peptide reduced Tau phosphorylation by Fyn without affecting Fyn's kinase activity state. In primary neurons, endogenous Tau-Fyn interaction was present primarily in neurites and was reduced by the peptide inhibitor, from which we inferred target engagement. Reducing Tau-SH3 interactions in neurons ameliorated Aßo toxicity by multiple outcome measures, namely Aßo-induced membrane trafficking abnormalities and neurite degeneration. Our results indicate that Tau-SH3 interactions are critical for Aßo toxicity and that inhibiting them is a promising therapeutic target for AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hipocampo/metabolismo , Neurônios/metabolismo , Domínios de Homologia de src , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Animais , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos Sprague-Dawley
7.
Front Neurol ; 10: 1252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32021611

RESUMO

Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) have been linked to both late-onset Alzheimer's disease and behavioral variant frontotemporal dementia (FTD), the latter presenting either in isolation or with cystic bone lesions in a condition called Nasu-Hakola disease. Models of the extracellular domain of TREM2 show that Nasu-Hakola disease-associated mutations are grossly inactivating by truncation, frameshift, or unfolding, that Alzheimer's disease (AD)-associated variants localize to a putative ligand-interacting region (PLIR) on the extracellular surface, and that FTD-associated variants are found in the hydrophobic core. However, while these disease-associated residues are predicted to play some role in disrupting ligand binding to the extracellular domain of TREM2, how they ultimately lead to disease remains unknown. Here, we used in silico molecular modeling to investigate all-atom models of TREM2 and characterize the effects on conformation and dynamical motion of AD-associated R47H and R62H as well as FTD-associated T96K, D86V, and T66M variants compared to the benign N68K variant and the common variant. Our model, which is based on a published 2.2 Å resolution crystal structure of the TREM2 extracellular domain, finds that both AD- and FTD-associated variants cause localized instability in three loops adjacent to the PLIR that correspond to the complementarity-determining regions (CDRs) of antibodies. This instability ultimately disrupts tethering between these CDRs and the core of the immunoglobulin domain, exposing a group of otherwise-buried, negatively charged residues. This instability and exposure of negatively charged residues is most severe following introduction of the T66M variant that has been described as causing FTD even in the heterozygous state and is less severe following introduction of variants that are less strongly tied to FTD or of those associated with AD. Thus, our results provide further evidence that the proposed loss-of-function caused by neurodegenerative disease-associated variants may be driven by altered conformational stability of the ligand-interacting CDR and, ultimately, loss of affinity or specificity for TREM2 ligands.

8.
Brain ; 140(5): 1447-1465, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379303

RESUMO

Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function.


Assuntos
Demência Frontotemporal/metabolismo , Demência Frontotemporal/terapia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Condicionamento Psicológico , Dependovirus , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Vetores Genéticos , Granulinas , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nestina/genética , Córtex Pré-Frontal/metabolismo , Progranulinas , Comportamento Social , Predomínio Social
9.
Brain ; 138(Pt 12): 3716-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26598495

RESUMO

Reduced cerebral blood flow impairs cognitive function and ultimately causes irreparable damage to brain tissue. The gliovascular unit, composed of neural and vascular cells, assures sufficient blood supply to active brain regions. Astrocytes, vascular smooth muscle cells, and pericytes are important players within the gliovascular unit modulating vessel diameters. While the importance of the gliovascular unit and the signals involved in regulating local blood flow to match neuronal activity is now well recognized, surprisingly little is known about this interface in disease. Alzheimer's disease is associated with reduced cerebral blood flow. Here, we studied how the gliovascular unit is affected in a mouse model of Alzheimer's disease, using a combination of ex vivo and in vivo imaging approaches. We specifically labelled vascular amyloid in living mice using the dye methoxy-XO4. We elicited vessel responses ex vivo using either pharmacological stimuli or cell-specific calcium uncaging in vascular smooth muscle cells or astrocytes. Multi-photon in vivo imaging through a cranial window allowed us to complement our ex vivo data in the presence of blood flow after label-free optical activation of vascular smooth muscle cells in the intact brain. We found that vascular amyloid deposits separated astrocyte end-feet from the endothelial vessel wall. High-resolution 3D images demonstrated that vascular amyloid developed in ring-like structures around the vessel circumference, essentially forming a rigid cast. Where vascular amyloid was present, stimulation of astrocytes or vascular smooth muscle cells via ex vivo Ca(2+) uncaging or in vivo optical activation produced only poor vascular responses. Strikingly, vessel segments that were unaffected by vascular amyloid responded to the same extent as vessels from age-matched control animals. We conclude that while astrocytes can still release vasoactive substances, vascular amyloid deposits render blood vessels rigid and reduce the dynamic range of affected vessel segments. These results demonstrate a mechanism that could account in part for the reduction in cerebral blood flow in patients with Alzheimer's disease.media-1vid110.1093/brain/awv327_video_abstractawv327_video_abstract.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Amiloidose/patologia , Amiloidose/fisiopatologia , Astrócitos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Músculo Liso Vascular/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/ultraestrutura , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/ultraestrutura , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia
10.
J Biomol Screen ; 19(10): 1338-49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156556

RESUMO

Alzheimer disease (AD) is the most common neurodegenerative disease, and with Americans' increasing longevity, it is becoming an epidemic. There are currently no effective treatments for this disorder. Abnormalities of Tau track more closely with cognitive decline than the most studied therapeutic target in AD, amyloid-ß, but the optimal strategy for targeting Tau has not yet been identified. On the basis of considerable preclinical data from AD models, we hypothesize that interactions between Tau and the Src-family tyrosine kinase, Fyn, are pathogenic in AD. Genetically reducing either Tau or Fyn is protective in AD mouse models, and a dominant negative fragment of Tau that alters Fyn localization is also protective. Here, we describe a new AlphaScreen assay and a live-cell bioluminescence resonance energy transfer (BRET) assay using a novel BRET pair for quantifying the Tau-Fyn interaction. We used these assays to map the binding site on Tau for Fyn to the fifth and sixth PXXP motifs to show that AD-associated phosphorylation at microtubule affinity regulating kinase sites increases the affinity of the Tau-Fyn interaction and to identify Tau-Fyn interaction inhibitors by high-throughput screening. This screen has identified a variety of chemically tractable hits, suggesting that the Tau-Fyn interaction may represent a good drug target for AD.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Domínios de Homologia de src , Proteínas tau/genética
11.
J Clin Invest ; 124(3): 981-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509083

RESUMO

Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C-associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dano ao DNA , Splicing de RNA , Proteína FUS de Ligação a RNA/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Cricetinae , Feminino , Histona Desacetilase 1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Sinapses/metabolismo , Transcriptoma
12.
J Neurosci ; 33(12): 5352-61, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516300

RESUMO

Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knock-out (Grn(-/-)) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn(+/-)) mice, which model progranulin haploinsufficiency. We found that Grn(+/-) mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn(-/-) mice, behavioral deficits in Grn(+/-) mice occurred in the absence of gliosis or increased expression of tumor necrosis factor-α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn(+/-) mice. Our findings indicate that FTD-related deficits resulting from progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons.


Assuntos
Encefalite , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Emoções/fisiologia , Feminino , Demência Frontotemporal/patologia , Gliose , Granulinas , Haploinsuficiência/fisiologia , Homozigoto , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Microglia/fisiologia , Fenótipo , Progranulinas , Comportamento Social , Comportamento Espacial/fisiologia
13.
PLoS One ; 7(10): e47884, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144711

RESUMO

Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient ax(J) mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3ß. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.


Assuntos
Neurônios/metabolismo , Tauopatias/metabolismo , Ubiquitina Tiolesterase/deficiência , Proteínas tau/metabolismo , Animais , Ataxina-3 , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Técnica Indireta de Fluorescência para Anticorpo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Análise de Sobrevida , Tauopatias/genética , Tauopatias/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas tau/genética
14.
Ann Neurol ; 72(6): 837-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280835

RESUMO

The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease.


Assuntos
Modelos Animais de Doenças , Demência Frontotemporal/genética , Adenosina Trifosfatases/genética , Animais , Proteína C9orf72 , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Biologia Molecular , Progranulinas , Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Proteína com Valosina , Proteínas tau/genética
15.
J Neurosci ; 31(2): 700-11, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228179

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-ß peptide (Aß) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aß. However, the mechanisms by which Aß, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aß and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aß and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aß, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/fisiologia , Transtornos Cognitivos/fisiopatologia , Rede Nervosa/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Sinapses/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Hipocampo/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Mutantes , Plasticidade Neuronal , Convulsões/metabolismo , Convulsões/fisiopatologia , Especificidade da Espécie , Transmissão Sináptica , Proteínas tau/genética
16.
J Neurosci ; 29(28): 9104-14, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605647

RESUMO

Endogenous protein quality control machinery has long been suspected of influencing the onset and progression of neurodegenerative diseases characterized by accumulation of misfolded proteins. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) tract in the protein huntingtin (htt), which leads to its aggregation and accumulation in inclusion bodies. Here, we demonstrate in a mouse model of HD that deletion of the molecular chaperones Hsp70.1 and Hsp70.3 significantly exacerbated numerous physical, behavioral and neuropathological outcome measures, including survival, body weight, tremor, limb clasping and open field activities. Deletion of Hsp70.1 and Hsp70.3 significantly increased the size of inclusion bodies formed by mutant htt exon 1, but surprisingly did not affect the levels of fibrillar aggregates. Moreover, the lack of Hsp70s significantly decreased levels of the calcium regulated protein c-Fos, a marker for neuronal activity. In contrast, deletion of Hsp70s did not accelerate disease in a mouse model of infectious prion-mediated neurodegeneration, ruling out the possibility that the Hsp70.1/70.3 mice are nonspecifically sensitized to all protein misfolding disorders. Thus, endogenous Hsp70s are a critical component of the cellular defense against the toxic effects of misfolded htt protein in neurons, but buffer toxicity by mechanisms independent of the deposition of fibrillar aggregates.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Choque Térmico HSP72/deficiência , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/genética , Fatores Etários , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP72/classificação , Doença de Huntington/complicações , Doença de Huntington/mortalidade , Corpos de Inclusão/patologia , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/genética , Proteínas do Tecido Nervoso/metabolismo , Exame Neurológico/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Redução de Peso/genética
17.
Neuron ; 51(6): 703-14, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16982417

RESUMO

Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Catepsina B/metabolismo , Fatores Etários , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catepsina B/genética , Linhagem Celular Tumoral , Feminino , Humanos , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Mutação/genética , Neuritos/metabolismo , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Placa Amiloide/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA