Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126322

RESUMO

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Epilepsia do Lobo Temporal/cirurgia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estudos Retrospectivos , Hipocampo/patologia , Epilepsia/patologia
2.
J Neurooncol ; 162(2): 253-265, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37010677

RESUMO

INTRODUCTION: Surgical resection has long been the treatment of choice for meningiomas and is considered curative in many cases. Indeed, the extent of resection (EOR) remains a significant factor in determining disease recurrence and outcome optimization for patients undergoing surgery. Although the Simpson Grading Scale continues to be widely accepted as the measure of EOR and is used to predict symptomatic recurrence, its utility is under increasing scrutiny. The influence of surgery in the definitive management of meningioma is being re-appraised considering the rapid evolution of our understanding of the biology of meningioma. DISCUSSION: Although historically considered "benign" lesions, meningioma natural history can vary greatly, behaving with unexpectedly high recurrence rates and growth which do not always behave in accordance with their WHO grade. Histologically confirmed WHO grade 1 tumors may demonstrate unexpected recurrence, malignant transformation, and aggressive behavior, underscoring the molecular complexity and heterogeneity. CONCLUSION: As our understanding of the clinical predictive power of genomic and epigenomic factors matures, we here discuss the importance of surgical decision-making paradigms in the context of our rapidly evolving understanding of these molecular features.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/cirurgia , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/cirurgia , Neoplasias Meníngeas/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Recidiva Local de Neoplasia/patologia , Procedimentos Neurocirúrgicos , Estudos Retrospectivos
3.
J Neurosurg Case Lessons ; 5(10)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36880508

RESUMO

BACKGROUND: Hirayama disease, a cervical myelopathy characterized most commonly by a self-limiting atrophic weakness of the upper extremities, is a rare entity, scarcely reported in the literature. Diagnosis is made by spinal magnetic resonance imaging (MRI), which typically shows loss of normal cervical lordosis, anterior displacement of the cord during flexion, and a large epidural cervical fat pad. Treatment options include observation or cervical immobilization by collar or surgical decompression and fusion. OBSERVATIONS: Here, the authors report an unusual case of a Hirayama-like disease in a young White male athlete who presented with rapidly progressive paresthesia in all 4 extremities and no weakness. Imaging showed characteristic findings of Hirayama disease as well as worsened cervical kyphosis and spinal cord compression in cervical neck extension, which has not previously been reported. Two-level anterior cervical discectomy and fusion and posterior spinal fusion improved both cervical kyphosis on extension and symptoms. LESSONS: Given the disease's self-limiting nature, and a lack of current reporting, there remains no consensus on how to manage these patients. Such findings presented here demonstrate the potentially heterogeneous MRI findings that can be observed in Hirayama disease and emphasize the utility of aggressive surgical management in young, active patients whereby a cervical collar may not be tolerated.

4.
Cereb Cortex ; 33(8): 4262-4279, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36097331

RESUMO

Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.


Assuntos
Hidrocefalia , Células-Tronco Neurais , Animais , Criança , Humanos , Hidrocefalia/cirurgia , Encéfalo , Ventrículos Cerebrais , Procedimentos Neurocirúrgicos
6.
BMC Med Genomics ; 15(1): 112, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568945

RESUMO

BACKGROUND: Multiple meningiomas (MMs) rarely occur sporadically. It is unclear whether each individual tumor in a single patient behaves similarly. Moreover, the molecular mechanisms underlying the formation of sporadic MMs and clonal formation etiology of these tumors are poorly understood. METHODS: Patients with spatially separated MMs without prior radiation exposure or a family history who underwent surgical resection of at least two meningiomas were included. Unbiased, comprehensive next generation sequencing was performed, and relevant clinical data was analyzed. RESULTS: Fifteen meningiomas and one dural specimen from six patients were included. The majority of tumors (12/15) were WHO Grade I; one patient had bilateral MMs, one of which was Grade II, while the other was Grade I. We found 11/15 of our cohort specimens were of NF2-loss subtype. Meningiomas from 5/6 patients had a monoclonal origin, with the tumor from the remaining patient showing evidence for independent clonal formation. We identified a novel case of non-NF2 mutant MM with monoclonal etiology. MMs due to a monoclonal origin did not always display a homogenous genomic profile, but rather exhibited heterogeneity due to branching evolution. CONCLUSIONS: Both NF2-loss and non-NF2 driven MMs can form due to monoclonal expansion and those tumors can acquire inter-tumoral heterogeneity through branched evolution. Grade I and II meningiomas can occur in the same patient. Thus, the molecular make-up and clinical behavior of one tumor in MMs, cannot reliably lend insight into that of the others and suggests the clinical management strategy for MMs should be tailored individually.


Assuntos
Neoplasias Meníngeas , Meningioma , Estudos de Coortes , Genômica , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia
7.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379995

RESUMO

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Assuntos
Hidrocefalia , Animais , Fenômenos Biomecânicos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Neurogênese/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
8.
J Neurooncol ; 156(2): 205-214, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34846640

RESUMO

INTRODUCTION: Meningiomas are generally considered "benign," however, these tumors can demonstrate variability in behavior and a surprising aggressiveness with elevated rates of recurrence. The advancement of next-generation molecular technologies have led to the understanding of the genomic and epigenomic landscape of meningiomas and more recent correlations with clinical characteristics and behavior. METHODS: Based on a thorough review of recent peer-reviewed publications (PubMed) and edited texts, we provide a molecular overview of meningiomas with a focus on relevant clinical implications. RESULTS: The identification of specific somatic driver mutations has led to the classification of several major genomic subgroups, which account for more than 80% of sporadic meningiomas, and can be distinguished using noninvasive clinical variables to help guide management decisions. Other somatic genomic modifications, including non-coding alterations and copy number variations, have also been correlated with tumor characteristics. Furthermore, epigenomic modifications in meningiomas have recently been described, with DNA methylation being the most widely studied and potentially most clinically relevant. Based on these molecular insights, several clinical trials are currently underway in an effort to establish effective medical therapeutic options for meningioma. CONCLUSION: As we enhance our multiomic understanding of meningiomas, our ability to care for patients with these tumors will continue to improve. Further biological insights will lead to additional progress in precision medicine for meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Variações do Número de Cópias de DNA , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico , Meningioma/genética , Meningioma/terapia
10.
Trends Neurosci ; 44(12): 961-976, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625286

RESUMO

The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.


Assuntos
Transtorno do Espectro Autista , Hidrocefalia , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Humanos , Hidrocefalia/genética , Mamíferos/metabolismo , Mutação/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética
12.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917959

RESUMO

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , DNA Helicases/metabolismo , Organogênese Vegetal/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
13.
Mol Cell Proteomics ; 19(8): 1248-1262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404488

RESUMO

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Peptídeos/metabolismo , Proteômica , Estresse Fisiológico , Adaptação Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Osmose , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Transcrição Gênica
14.
Plant Physiol ; 181(3): 855-866, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31488572

RESUMO

Autophagy is a major catabolic process in eukaryotes with a key role in homeostasis, programmed cell death, and aging. In plants, autophagy is also known to regulate agronomically important traits such as stress resistance, longevity, vegetative biomass, and seed yield. Despite its significance, there is still a shortage of reliable tools modulating plant autophagy. Here, we describe the first robust pipeline for identification of specific plant autophagy-modulating compounds. Our screening protocol comprises four phases: (1) high-throughput screening of chemical compounds in cell cultures of tobacco (Nicotiana tabacum); (2) confirmation of the identified hits in planta using Arabidopsis (Arabidopsis thaliana); (3) further characterization of the effect using conventional molecular biology methods; and (4) verification of chemical specificity on autophagy in planta. The methods detailed here streamline the identification of specific plant autophagy modulators and aid in unraveling the molecular mechanisms of plant autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos Orgânicos/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Morfolinas/farmacologia , Tiadiazóis/farmacologia , Nicotiana/citologia , Nicotiana/efeitos dos fármacos
15.
Soc Sci Med ; 188: 60-68, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28732236

RESUMO

RATIONALE: Health disparities defined by neighborhood socioeconomic status (SES) are well established; it is less well understood whether neighborhood SES is differentially associated with health depending on one's own SES. OBJECTIVE: The double jeopardy hypothesis, collective resources model, fundamental cause theory, and relative deprivation hypothesis support differential patterns of association between neighborhood and individual SES with health. The first three models suggest that higher neighborhood SES predicts health more strongly among lower, as compared to higher, SES individuals. The relative deprivation hypothesis suggests that higher SES neighborhoods bring no extra health benefit to low SES individuals and could even bring a health deficit. This study examined competing hypotheses with prospective associations between cardiovascular (CV) health and individual SES, neighborhood SES, and their interaction. METHOD: Data were from two waves of the Midlife in the United States (MIDUS) Study (N = 1012), a national survey of adults ages 25 and older at baseline. Neighborhood SES was a composite of five census tract-level SES indicators from the 1990 census. Individual SES was a composite of educational attainment and household income at wave one (1995-1996). CV health at wave two (2004-2008), was computed as a composite based on smoking status, body mass index, physical activity, diet, total cholesterol, blood pressure, and glucose. RESULTS: Individual and neighborhood SES were each associated with CV health net of baseline health status and other covariates. Interactions between individual and neighborhood SES showed that higher neighborhood SES was associated with better CV health for those of lower, not higher, individual SES. CONCLUSION: Results are consistent with the double jeopardy hypothesis, the collective resources model, and the fundamental cause theory, but not with a relative deprivation hypothesis. Results suggest that additional attention to the neighborhood socioeconomic context of lower SES individuals may reduce SES disparities in cardiovascular health.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Nível de Saúde , Renda/estatística & dados numéricos , Características de Residência/estatística & dados numéricos , Classe Social , Adulto , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/psicologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/psicologia , Exercício Físico/psicologia , Feminino , Humanos , Hipertensão/complicações , Hipertensão/epidemiologia , Hipertensão/psicologia , Masculino , Pessoa de Meia-Idade , Fumar/epidemiologia , Inquéritos e Questionários , Estados Unidos/epidemiologia
16.
Nat Commun ; 7: 11710, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271794

RESUMO

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Assuntos
Ácidos/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia
17.
Methods Mol Biol ; 1385: 115-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26614285

RESUMO

We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.


Assuntos
Engenharia Genética/métodos , Nicotiana/genética , Plantas Geneticamente Modificadas , Inibidores de Proteases/metabolismo , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo , Transgenes
18.
Plant Biotechnol J ; 13(8): 1169-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286859

RESUMO

A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 µg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 µg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins.


Assuntos
Nicotiana/genética , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/biossíntese , Acetatos/farmacologia , Agrobacterium tumefaciens/efeitos dos fármacos , Anticorpos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Peptídeo Hidrolases/metabolismo , Folhas de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Transfecção , Regulação para Cima/efeitos dos fármacos
19.
Sci Transl Med ; 7(289): 289ra86, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019222

RESUMO

Glioma is the most common malignant primary brain tumor. Its rapid growth is aided by tumor-mediated glutamate release, creating peritumoral excitotoxic cell death and vacating space for tumor expansion. Glioma glutamate release may also be responsible for seizures, which complicate the clinical course for many patients and are often the presenting symptom. A hypothesized glutamate release pathway is the cystine/glutamate transporter System xc (-) (SXC), responsible for the cellular synthesis of glutathione (GSH). However, the relationship of SXC-mediated glutamate release, seizures, and tumor growth remains unclear. Probing expression of SLC7A11/xCT, the catalytic subunit of SXC, in patient and mouse-propagated tissues, we found that ~50% of patient tumors have elevated SLC7A11 expression. Compared with tumors lacking this transporter, in vivo propagated and intracranially implanted SLC7A11-expressing tumors grew faster, produced pronounced peritumoral glutamate excitotoxicity, induced seizures, and shortened overall survival. In agreement with animal data, increased SLC7A11 expression predicted shorter patient survival according to genomic data in the REMBRANDT (National Institutes of Health Repository for Molecular Brain Neoplasia Data) database. In a clinical pilot study, we used magnetic resonance spectroscopy to determine SXC-mediated glutamate release by measuring acute changes in glutamate after administration of the U.S. Food and Drug Administration-approved SXC inhibitor, sulfasalazine (SAS). In nine glioma patients with biopsy-confirmed SXC expression, we found that expression positively correlates with glutamate release, which is acutely inhibited with oral SAS. These data suggest that SXC is the major pathway for glutamate release from gliomas and that SLC7A11 expression predicts accelerated growth and tumor-associated seizures.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Glioma/complicações , Glioma/metabolismo , Convulsões/complicações , Convulsões/metabolismo , Edema/patologia , Genômica , Glioma/classificação , Glutamatos/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurotoxinas/toxicidade , Análise de Sobrevida
20.
Methods Mol Biol ; 1242: 93-103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408447

RESUMO

Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64.


Assuntos
Arabidopsis/citologia , Rastreamento de Células/métodos , Endocitose , Corantes Fluorescentes/farmacocinética , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Arabidopsis/anatomia & histologia , Arabidopsis/química , Células Epiteliais/química , Microscopia Confocal/métodos , Células Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA