Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 220: 22-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104714

RESUMO

Batrachochytrium dendrobatidis (Bd) is a lethal amphibian pathogen, partly due to its ability to evade the immune system of susceptible frog species. In many pathogenic fungi, the antioxidant glutathione is a virulence factor that helps neutralise oxidative stressors generated from host immune cells, as well as other environmental stressors such as heavy metals. The role of glutathione in stress tolerance in Bd has not been investigated. Here, we examine the changes in the glutathione pool after stress exposure and quantify the effect of glutathione depletion on cell growth and stress tolerance. Depletion of glutathione repressed growth and release of zoospores, suggesting that glutathione is essential for life cycle completion in Bd. Supplementation with <2 mM exogenous glutathione accelerated zoospore development, but concentrations >2 mM were strongly inhibitory to Bd cells. While hydrogen peroxide exposure lowered the total cellular glutathione levels by 42 %, glutathione depletion did not increase the sensitivity to hydrogen peroxide. Exposure to cadmium increased total cellular glutathione levels by 93 %. Glutathione-depleted cells were more sensitive to cadmium, and this effect was attenuated by glutathione supplementation, suggesting that glutathione plays an important role in cadmium tolerance. The effects of heat and salt were exacerbated by the addition of exogenous glutathione. The impact of glutathione levels on Bd stress sensitivity may help explain differences in host susceptibility to chytridiomycosis and may provide opportunities for synergistic therapeutics.


Assuntos
Batrachochytrium , Cádmio , Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Cádmio/toxicidade , Animais , Batrachochytrium/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Micoses/microbiologia , Micoses/veterinária , Micoses/metabolismo , Anfíbios/microbiologia
2.
Pathogens ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37111431

RESUMO

The impact of malaria-associated acute kidney injury (MAKI), one of the strongest predictors of death in children with severe malaria (SM), has been largely underestimated and research in this area has been neglected. Consequently, a standard experimental mouse model to research this pathology is still lacking. The purpose of this study was to develop an in vivo model that resembles the pathology in MAKI patients. In this study, unilateral nephrectomies were performed on wild-type mice prior to infection with Plasmodium berghei NK65. The removal of one kidney has shown to be an effective approach to replicating the most common findings in humans with MAKI. Infection of nephrectomized mice, compared to their non-nephrectomized counterparts, resulted in the development of kidney injury, evident by histopathological analysis and elevated levels of acute kidney injury (AKI) biomarkers, including urinary neutrophil gelatinase-associated lipocalin, serum Cystatin C, and blood urea nitrogen. Establishment of this in vivo model of MAKI is critical to the scientific community, as it can be used to elucidate the molecular pathways implicated in MAKI, delineate the development of the disease, identify biomarkers for early diagnosis and prognosis, and test potential adjunctive therapies.

3.
Sci Rep ; 10(1): 16769, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028928

RESUMO

Hepatocellular carcinoma is rapidly becoming one of the leading causes of cancer-related deaths, largely due to the increasing incidence of non-alcoholic fatty liver disease. This in part may be attributed to Westernised diets high in fructose sugar. While many studies have shown the effects of fructose on inducing metabolic-related liver diseases, little research has investigated the effects of fructose sugar on liver cancer metabolism. The present study aimed to examine the metabolic effects of fructose on hepatocellular carcinoma growth in vitro and in vivo. Fructose sugar was found to reduce cell growth in vitro, and caused alterations in the expression of enzymes involved in the serine-glycine synthesis and pentose phosphate pathways. These biosynthesis pathways are highly active in cancer cells and they utilise glycolytic by-products to produce energy and nucleotides for growth. Hence, the study further investigated the efficacy of two novel drugs that inhibit these pathways, namely NCT-503 and Physcion. The study is the first to show that the combination treatment of NCT-503 and Physcion substantially inhibited hepatocellular carcinoma growth in vitro and in vivo. The combination of fructose diet and metabolism-inhibiting drugs may provide a unique metabolic environment that warrants further investigation in targeting hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Frutose/farmacologia , Neoplasias Hepáticas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Bases de Dados Factuais , Emodina/análogos & derivados , Emodina/farmacologia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Taxa de Sobrevida
4.
Biomolecules ; 10(4)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218179

RESUMO

Hepatocellular carcinoma is one of few cancer types that continues to grow in incidence and mortality worldwide. With the alarming increase in diabetes and obesity rates, the higher rates of hepatocellular carcinoma are a result of underlying non-alcoholic fatty liver disease. Many have attributed disease progression to an excess consumption of fructose sugar. Fructose has known toxic effects on the liver, including increased fatty acid production, increased oxidative stress, and insulin resistance. These effects have been linked to non-alcoholic fatty liver (NAFLD) disease and a progression to non-alcoholic steatohepatitis (NASH). While the literature suggests fructose may enhance liver cancer progression, the precise mechanisms in which fructose induces tumor formation remains largely unclear. In this review, we summarize the current understanding of fructose metabolism in liver disease and liver tumor development. Furthermore, we consider the latest knowledge of cancer cell metabolism and speculate on additional mechanisms of fructose metabolism in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Frutose/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Frutose/administração & dosagem , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Resistência à Insulina , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Efeito Warburg em Oncologia
5.
J Vis Exp ; (135)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29863673

RESUMO

Amphibians are experiencing a great loss in biodiversity globally and one of the major causes is the infectious disease chytridiomycosis. This disease is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which infects and disrupts frog epidermis; however, pathological changes have not been explicitly characterized. Apoptosis (programmed cell death) can be used by pathogens to damage host tissue, but can also be a host mechanism of disease resistance for pathogen removal. In this study, we quantify epidermal cell death of infected and uninfected animals using two different assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL), and caspase 3/7. Using ventral, dorsal, and thigh skin tissue in the TUNEL assay, we observe cell death in the epidermal cells in situ of clinically infected animals and compare cell death with uninfected animals using fluorescent microscopy. In order to determine how apoptosis levels in the epidermis change over the course of infection we remove toe-tip samples fortnightly over an 8-week period, and use a caspase 3/7 assay with extracted proteins to quantify activity within the samples. We then correlate caspase 3/7 activity with infection load. The TUNEL assay is useful for localization of cell death in situ, but is expensive and time intensive per sample. The caspase 3/7 assay is efficient for large sample sizes and time course experiments. However, because frog toe tip biopsies are small there is limited extract available for sample standardization via protein quantification methods, such as the Bradford assay. Therefore, we suggest estimating skin surface area through photographic analysis of toe biopsies to avoid consuming extracts during sample standardization.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/genética , Células Epiteliais/metabolismo , Marcação In Situ das Extremidades Cortadas/métodos , Transferases/genética , Animais , Anuros , Apoptose , Epiderme
6.
PLoS One ; 11(8): e0160559, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513339

RESUMO

UNLABELLED: The purpose of this study determined if oral supplementation of Protandim® (a nutraceutical) for 90 days improved 5-km running performance and reduced serum thiobarbituric acid-reacting substances (TBARS) at rest, an indicator of oxidative stress. Secondary objectives were to measure whole blood superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPX), at rest and 10 minutes after completion of the race before and after supplementation as well as quality of life. In a double-blind, randomized, placebo controlled trial, 38 runners [mean (SD) = 34 (7) yrs; BMI = 22 (2) kg/m2] received either 90 days of Protandim® [1 pill a day, n = 19)] or placebo (n = 19). Randomization was done in blocks of two controlling for sex and 5-km baseline performance. A 5-km race was performed at baseline and after 90 days of supplementation, with blood samples taken before and 10-min after each race. Fasting blood samples were acquired at baseline, after 30, 60, and 90 days of supplementation. TBARS, SOD, GPX, and GSH were assayed in an out-of-state accredited lab. Running performance was not altered by Protandim® or placebo [20.3 (2.1) minutes, with an -8 (33) seconds change in 5-km time regardless of group]. There was no change in TBARS, SOD, or GPX (at rest) after three months of Protandim® supplementation compared to placebo. However, in a subgroup ≥ 35 years of age, there was a 2-fold higher increase in SOD in those taking Protandim® for three months compared to those on placebo (p = 0.038). The mean post-race change in TBARS (compared to pre-race) increased by about 20% in half of the subjects, but was not altered between groups, even after three months of supplementation. Quality of life was also not different between the two conditions. In conclusion, Protandim® did not (1) alter 5-km running time, (2) lower TBARS at rest (3) raise antioxidant enzyme concentrations compared to placebo (with exception of SOD in those ≥ 35 years old) or, (4) affect quality of life compared to placebo. TRIAL REGISTRATION: ClinicalTrials.gov NCT02172625.


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Medicamentos de Ervas Chinesas/farmacologia , Corrida , Adulto , Antioxidantes/metabolismo , Método Duplo-Cego , Feminino , Glutationa/sangue , Glutationa Peroxidase/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Qualidade de Vida , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
7.
PLoS One ; 10(9): e0138771, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402917

RESUMO

The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 µM. Pre-treatment with SFN (5 µM) increased cell viability in response to CdSe QDs (20 µM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.


Assuntos
Compostos de Cádmio/toxicidade , Isotiocianatos/farmacologia , Fígado/patologia , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Adenina/análogos & derivados , Adenina/farmacologia , Androstadienos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfóxidos , Transcrição Gênica/efeitos dos fármacos , Wortmanina
11.
Infect Immun ; 82(1): 316-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166956

RESUMO

In Staphylococcus aureus, the low-molecular-weight thiol called bacillithiol (BSH), together with cognate S-transferases, is believed to be the counterpart to the glutathione system of other organisms. To explore the physiological role of BSH in S. aureus, we constructed mutants with the deletion of bshA (sa1291), which encodes the glycosyltransferase that catalyzes the first step of BSH biosynthesis, and fosB (sa2124), which encodes a BSH-S-transferase that confers fosfomycin resistance, in several S. aureus strains, including clinical isolates. Mutation of fosB or bshA caused a 16- to 60-fold reduction in fosfomycin resistance in these S. aureus strains. High-pressure liquid chromatography analysis, which quantified thiol extracts, revealed some variability in the amounts of BSH present across S. aureus strains. Deletion of fosB led to a decrease in BSH levels. The fosB and bshA mutants of strain COL and a USA300 isolate, upon further characterization, were found to be sensitive to H2O2 and exhibited decreased NADPH levels compared with those in the isogenic parents. Microarray analyses of COL and the isogenic bshA mutant revealed increased expression of genes involved in staphyloxanthin synthesis in the bshA mutant relative to that in COL under thiol stress conditions. However, the bshA mutant of COL demonstrated decreased survival compared to that of the parent in human whole-blood survival assays; likewise, the naturally BSH-deficient strain SH1000 survived less well than its BSH-producing isogenic counterpart. Thus, the survival of S. aureus under oxidative stress is facilitated by BSH, possibly via a FosB-mediated mechanism, independently of its capability to produce staphyloxanthin.


Assuntos
Proteínas de Bactérias/fisiologia , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Estresse Oxidativo/fisiologia , Staphylococcus aureus/metabolismo , Amidoidrolases/deficiência , Análise de Variância , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cisteína/genética , Cisteína/fisiologia , Glucosamina/genética , Glucosamina/fisiologia , Glicosiltransferases/genética , Peróxido de Hidrogênio/farmacologia , Análise em Microsséries , Testes de Sensibilidade Microbiana , Mutação , NADP/metabolismo , Peroxidase/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Xantofilas/biossíntese
12.
Antioxid Redox Signal ; 21(3): 357-67, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24313874

RESUMO

AIMS: In bacillithiol (BSH)-utilizing organisms, protein S-bacillithiolation functions as a redox switch in response to oxidative stress and protects critical Cys residues against overoxidation. In Bacillus subtilis, both the redox-sensing repressor OhrR and the methionine synthase MetE are redox controlled by S-bacillithiolation in vivo. Here, we identify pathways of protein de-bacillithiolation and test the hypothesis that YphP(BrxA) and YqiW(BrxB) act as bacilliredoxins (Brx) to remove BSH from OhrR and MetE mixed disulfides. RESULTS: We present evidence that the BrxA and BrxB paralogs have de-bacillithiolation activity. This Brx activity results from attack of the amino-terminal Cys residue in a CGC motif on protein BSH-mixed disulfides. B. subtilis OhrR DNA-binding activity is eliminated by S-thiolation on its sole Cys residue. Both the BrxA and BrxB bacilliredoxins mediate de-bacillithiolation of OhrR accompanied by the transfer of BSH to the amino-terminal cysteine of their CGC active site motif. In vitro studies demonstrate that BrxB can restore DNA-binding activity to OhrR which is S-bacillithiolated, but not to OhrR that is S-cysteinylated. MetE is most strongly S-bacillithiolated at Cys719 in vitro and can be efficiently de-bacillithiolated by both BrxA and BrxB. INNOVATION AND CONCLUSION: We demonstrate that BrxA and BrxB function in the reduction of BSH mixed protein disulfides with two natural substrates (MetE, OhrR). These results provide biochemical evidence for a new class of bacterial redox-regulatory proteins, the bacilliredoxins, which function analogously to glutaredoxins. Bacilliredoxins function in concert with other thiol-disulfide oxidoreductases to maintain redox homeostasis in response to disulfide stress conditions.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Metiltransferases/metabolismo , Oxirredução , Proteínas Repressoras/metabolismo , Bacillus subtilis/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Glucosamina/metabolismo , Estresse Oxidativo , Enxofre/metabolismo
13.
Chembiochem ; 14(16): 2160-8, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24115506

RESUMO

Bacillithiol (BSH) is the major low-molecular-weight (LMW) thiol in many low-G+C Gram-positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa , redox potential and thiol-disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol-disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid-exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.


Assuntos
Bacillus subtilis/química , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Aminas/química , Bacillus subtilis/metabolismo , Ácidos Carboxílicos/química , Cisteína/química , Glucosamina/química , Glutationa/química , Cinética , Oxirredução , Compostos de Sulfidrila/química
16.
Biochem J ; 454(2): 239-47, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23758290

RESUMO

BshB, a key enzyme in bacillithiol biosynthesis, hydrolyses the acetyl group from N-acetylglucosamine malate to generate glucosamine malate. In Bacillus anthracis, BA1557 has been identified as the N-acetylglucosamine malate deacetylase (BshB); however, a high content of bacillithiol (~70%) was still observed in the B. anthracis ∆BA1557 strain. Genomic analysis led to the proposal that another deacetylase could exhibit cross-functionality in bacillithiol biosynthesis. In the present study, BA1557, its paralogue BA3888 and orthologous Bacillus cereus enzymes BC1534 and BC3461 have been characterized for their deacetylase activity towards N-acetylglucosamine malate, thus providing biochemical evidence for this proposal. In addition, the involvement of deacetylase enzymes is also expected in bacillithiol-detoxifying pathways through formation of S-mercapturic adducts. The kinetic analysis of bacillithiol-S-bimane conjugate favours the involvement of BA3888 as the B. anthracis bacillithiol-S-conjugate amidase (Bca). The high degree of specificity of this group of enzymes for its physiological substrate, along with their similar pH-activity profile and Zn²âº-dependent catalytic acid-base reaction provides further evidence for their cross-functionalities.


Assuntos
Amidoidrolases/metabolismo , Bacillus anthracis/metabolismo , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Acetilação , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Domínio Catalítico , Sequência Conservada , Cisteína/metabolismo , Glucosamina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Malatos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Zinco/metabolismo
17.
Biochem Biophys Res Commun ; 436(2): 128-33, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23618856

RESUMO

Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low molecular weight thiol found in low GC Gram-positive bacteria, such as Staphylococcus aureus. Like other low molecular weight thiols, BSH is likely involved in protection against a number of stresses. We examined S. aureus transposon mutants disrupted in each of the three genes associated with BSH biosynthesis. These mutants are sensitive to alkylating stress, oxidative stress, and metal stress indicating that BSH and BSH-dependent enzymes are involved in protection of S. aureus. We further demonstrate that BshB, a deacetylase involved in the second step of BSH biosynthesis, also acts as a BSH conjugate amidase and identify S. aureus USA 300 LAC 2626 as a BSH-S-transferase, which is able to conjugate chlorodinitrobenzene, cerulenin, and rifamycin to BSH.


Assuntos
Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Mutação , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Glucosamina/metabolismo , Iodoacetamida/farmacologia , Metais/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Oxidantes/farmacologia , Aldeído Pirúvico/farmacologia , Staphylococcus aureus/enzimologia , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
18.
Antioxid Redox Signal ; 18(11): 1273-95, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22938038

RESUMO

AIMS: Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. RESULTS: In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin-NADP(+) oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5'-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. INNOVATION: Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. CONCLUSION: S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects conserved metabolic enzymes and essential proteins against overoxidation.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Ácido Hipocloroso/metabolismo , Estresse Fisiológico , Bacillus/efeitos dos fármacos , Vias Biossintéticas , Cisteína/metabolismo , Glucosamina/metabolismo , Metabolômica , Metiltransferases/metabolismo , Oxirredução , Estresse Oxidativo , Proteoma/metabolismo , Proteômica , Hipoclorito de Sódio/metabolismo , Hipoclorito de Sódio/farmacologia
19.
Biochem J ; 451(1): 69-79, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23256780

RESUMO

FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Fosfomicina/química , Staphylococcus aureus/enzimologia , Transferases/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Cisteína/genética , Cisteína/metabolismo , Fosfomicina/farmacologia , Glucosamina/análogos & derivados , Glucosamina/genética , Glucosamina/metabolismo , Cinética , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Staphylococcus aureus/genética , Transferases/genética , Transferases/metabolismo
20.
FEMS Microbiol Lett ; 335(2): 95-103, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22812504

RESUMO

Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.


Assuntos
Desferroxamina/metabolismo , Ferro/metabolismo , Micromonosporaceae/metabolismo , Sideróforos/metabolismo , Sequência de Bases , Ordem dos Genes , Genes Bacterianos , Micromonosporaceae/genética , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Sideróforos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA