Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R824-R833, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466686

RESUMO

Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.


Assuntos
Temperatura Baixa , Imersão , Fibras Musculares Esqueléticas/fisiologia , Neovascularização Fisiológica/fisiologia , Treinamento Resistido , Capilares/fisiologia , Miosinas Cardíacas/biossíntese , Humanos , Masculino , MicroRNAs/biossíntese , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/biossíntese , Fluxo Sanguíneo Regional/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto Jovem
2.
Am J Physiol Regul Integr Comp Physiol ; 307(8): R998-R1008, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121612

RESUMO

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.


Assuntos
Temperatura Baixa , Exercício Físico/fisiologia , Imersão , Músculo Esquelético/fisiologia , Recuperação de Função Fisiológica/fisiologia , Treinamento Resistido , Água , Temperatura Corporal , Estudos Cross-Over , Endotelina-1/sangue , Humanos , Interleucina-6/sangue , Lactatos/sangue , Masculino , Mioglobina/sangue , Oxigênio/sangue , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA