Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7957): 553-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055640

RESUMO

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Mutação , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Filogenia , Carcinoma de Pequenas Células do Pulmão/patologia , Biópsia Líquida
2.
PLoS One ; 6(4): e19220, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541281

RESUMO

Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH(4)(+) and NO(3)(-)) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either (14)C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g(-1) root DW h(-1), respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO(3)(-), but slower than as L-alanine, L-trialanine and NH(4)(+). Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g(-1) root DW h(-1)), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle.


Assuntos
Aminoácidos/química , Nitrogênio/metabolismo , Peptídeos/metabolismo , Triticum/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Soluções , Estereoisomerismo , Reino Unido
3.
Anal Chem ; 80(12): 4741-51, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18484740

RESUMO

The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1beta and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1beta and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal-Wallis analysis of variance with Dunn's multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences ( P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1beta determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface.


Assuntos
Líquidos Corporais/química , Imunoensaio/métodos , Interleucina-1beta/análise , Interleucina-1beta/sangue , Interleucina-6/análise , Interleucina-6/sangue , Vagina/metabolismo , Feminino , Humanos , Padrões de Referência , Reprodutibilidade dos Testes
4.
Antiviral Res ; 69(1): 9-23, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16337284

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and certain lymphoproliferative disorders. The role of KSHV lytic replication has been implicated in the tumor pathogenesis. A highly specific molecular complex formed by the KSHV DNA polymerase (POL8) and processivity factor (PF8) is indispensable for lytic viral DNA synthesis and may serve as an excellent molecular anti-KSHV target. The majority of conventional nucleoside-based anti-herpetic DNA synthesis inhibitors require intracellular phosphorylation/activation before they can exert inhibitory activity as competitive substrates for viral DNA polymerases. Novel and more potent inhibitors of KSHV DNA synthesis may be discovered through POL8/PF8-targeted high throughput screening (HTS) of small molecule chemical libraries. We developed a microplate-based KSHV POL8/PF8-mediated DNA synthesis inhibition assay suitable for HTS and screened the NCI Diversity Set that comprised 1992 synthetic compounds. Twenty-eight compounds exhibited greater than 50% inhibition. The inhibitory activity was confirmed for 25 of the 26 hit compounds available for further testing, with the 50% inhibitory concentrations ranging from 0.12+/-0.07 microM (mean+/-S.D.) to 10.83+/-4.19 microM. Eighteen of the confirmed active compounds efficiently blocked KSHV processive DNA synthesis in vitro. One of the hit compounds, NSC 373989, a pyrimidoquinoline analog, was shown to dose-dependently reduce the levels of KSHV virion production and KSHV DNA in lytically induced KSHV-infected BCBL-1 cells, suggesting that the compound blocked lytic KSHV DNA synthesis. HTS for KSHV POL8/PF8 inhibitors is feasible and may lead to discovery of novel non-nucleoside KSHV DNA synthesis inhibitors.


Assuntos
DNA Viral/antagonistas & inibidores , Herpesvirus Humano 8/efeitos dos fármacos , Vírion/efeitos dos fármacos , Animais , Linhagem Celular , DNA Viral/biossíntese , Proteínas de Ligação a DNA/antagonistas & inibidores , Herpesvirus Humano 8/metabolismo , Pirimidinonas/química , Pirimidinonas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Proteínas Virais/antagonistas & inibidores , Vírion/metabolismo
5.
Antimicrob Agents Chemother ; 49(12): 4965-73, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16304159

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) infection is a prerequisite for the development of Kaposi's sarcoma (KS). Blocking lytic KSHV replication may hinder KS tumorigenesis. Here, we report potent in vitro anti-KSHV activity of 2'-exo-methanocarbathymidine [North-methanocarbathymidine (N-MCT)], a thymidine analog with a pseudosugar ring locked in the northern conformation, which has previously been shown to block the replication of herpes simplex virus types 1 and 2. N-MCT inhibited KSHV virion production in lytically induced KSHV-infected BCBL-1 cells with a substantially lower 50% inhibitory concentration (IC50) than those of cidofovir (CDV) and ganciclovir (GCV) (IC50, mean +/- standard deviation: 0.08 +/- 0.03, 0.42 +/- 0.07, and 0.96 +/- 0.49 microM for N-MCT, CDV, and GCV, respectively). The reduction in KSHV virion production was accompanied by a corresponding decrease in KSHV DNA levels in the N-MCT-treated BCBL-1 cells, indicating that the compound blocked lytic KSHV DNA replication. A time- and dose-dependent accumulation of N-MCT-triphosphate (TP) was demonstrated in lytically induced BCBL-1 cells, while uninfected cells showed virtually no accumulation. The levels of N-MCT-TP were significantly decreased in the presence of 5'-ethynylthymidine, a potent inhibitor of herpesvirus thymidine kinase, resulting in the abrogation of anti-KSHV activity of N-MCT. N-MCT-TP more effectively blocked in vitro DNA synthesis by KSHV DNA polymerase with an IC50 of 6.24 +/- 0.08 microM (mean +/- standard deviation) compared to CDV-diphosphate (14.70 +/-2.47 microM) or GCV-TP (24.59 +/- 5.60 microM). Taken together, N-MCT is a highly potent and target-specific anti-KSHV agent which inhibits lytic KSHV DNA synthesis through its triphosphate metabolite produced in KSHV-infected cells expressing a virally encoded thymidine kinase.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Sarcoma de Kaposi/tratamento farmacológico , Timidina/análogos & derivados , Antivirais/metabolismo , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Timidina/farmacologia , Timidina/uso terapêutico , Células Tumorais Cultivadas
6.
Biochem Biophys Res Commun ; 296(5): 1228-37, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12207905

RESUMO

The crucial functions of HIV-1 nucleocapsid-p7 protein (NC-p7) at different stages of HIV replication are dependent on its nucleic acid binding properties. In this study, a search has been made to identify antagonists of the interaction between NC-p7 and d(TG)(4). A chemical library of approximately 2000 small molecules (the NCI Diversity Set) was screened, of the 26 active inhibitors that were identified, five contained a xanthenyl ring structure. Further analysis of 63 structurally related compounds led to the identification of 2,3,4,5-tetrachloro-6-(4('),5('),6(')-trihydroxy-3(')-oxo-3H-xanthen-9(')-yl)benzoic acid, which binds to NC-p7 stoichiometrically. This compound exerted a significant anti-HIV activity in vitro with an IC(50) of 16.6+/-4.3 microM (means+/-SD). Synthetic variants lacking the two hydroxyls at positions 4(') and 5(') in the xanthenyl ring system failed to bind NC-p7 and showed significantly less protection against HIV infection. Molecular modeling predicts that these hydroxyl groups would bind to the amide nitrogen of Gly(35) with other contacts at the carbonyl oxygens of Gly(40) and Lys(33).


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo , Capsídeo/antagonistas & inibidores , Fluoresceínas/farmacologia , Produtos do Gene gag/antagonistas & inibidores , Proteínas Virais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Capsídeo/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/metabolismo , Fluoresceínas/química , Fluoresceínas/metabolismo , Produtos do Gene gag/metabolismo , Humanos , Modelos Moleculares , Oligonucleotídeos/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície , Xantenos/metabolismo , Xantenos/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana
7.
Bioorg Med Chem ; 10(5): 1263-73, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11886789

RESUMO

Hyper-mutable retroviruses such as HIV can become rapidly resistant to drugs used to treat infection. Strategies for coping with drug-resistant strains of virus include combination therapies, using viral protease and reverse transcriptase inhibitors. Another approach is the development of antiviral agents that attack mutationally nonpermissive targets that have functions essential for viral replication. Thus, the highly conserved nucleocapsid protein, NCp7, was chosen as a prime target in our search for novel anti-HIV agents that can overcome the problem of viral drug resistance. Recently, we reported (J. Med. Chem. 1999, 42, 67) a novel chemotype, the pyridinioalkanoyl thioesters (PATEs), based on 2-mercaptobenzamides as the thiol component and having its amide nitrogen substituted with various phenylsulfonyl moieties. These compounds were identified as relatively nontoxic anti-HIV agents in the XTT cytoprotection assay. In this study, we wish to report a separate genre of active PATEs wherein the thiol component consists of an N-2-mercaptobenzoyl-amino acid derivative. Active derivatives (EC(50) < 10 microM) reported herein were confined to amino acid primary amides or methyl amides having side chains no larger than isobutyl. Amino acids terminating in free carboxyl or carboxylic acid ester groups were mostly inactive. Selected compounds were shown to be active on chronically infected CEM/SK-1, TNFalpha-induced U1, ACH-2 cells and virucidal on cell-free virus, latently infected U1 cells and acutely infected primary peripheral blood mononuclear cells (PBMCs).


Assuntos
Fármacos Anti-HIV/síntese química , Proteínas do Capsídeo , Compostos de Piridínio/síntese química , Proteínas Virais , Aminoácidos , Fármacos Anti-HIV/farmacologia , Benzamidas , Capsídeo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Ésteres/síntese química , Ésteres/farmacologia , Produtos do Gene gag/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Compostos de Piridínio/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA