Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Pathol ; 39(6): 916-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859884

RESUMO

Aberrant signaling by transforming growth factor-ß (TGF-ß) and its type I (ALK5) receptor has been implicated in a number of human diseases and this pathway is considered a potential target for therapeutic intervention. Transforming growth factor-ß signaling via ALK5 plays a critical role during heart development, but the role of ALK5 in the adult heart is poorly understood. In the current study, the preclinical toxicology of ALK5 inhibitors from two different chemistry scaffolds was explored. Ten-week-old female Han Wistar rats received test compounds by the oral route for three to seven days. Both compounds induced histopathologic heart valve lesions characterized by hemorrhage, inflammation, degeneration, and proliferation of valvular interstitial cells. The pathology was observed in all animals, at all doses tested, and occurred in all four heart valves. Immunohistochemical analysis of ALK5 in rat hearts revealed expression in the valves, but not in the myocardium. Compared to control animals, protein levels of ALK5 were unchanged in the heart valves of treated animals. We also observed a physeal dysplasia in the femoro-tibial joint of rats treated with ALK5 inhibitors, a finding consistent with a pharmacological effect described previously with ALK5 inhibitors. Overall, these findings suggest that TGF-ß signaling via ALK5 plays a critical role in maintaining heart valve integrity.


Assuntos
Valvas Cardíacas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Valvas Cardíacas/efeitos dos fármacos , Imuno-Histoquímica/métodos , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
2.
Toxicol Sci ; 120(1): 14-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177772

RESUMO

Cardiotoxicity, also referred to as drug-induced cardiac injury, is an issue associated with the use of some small-molecule kinase inhibitors and antibody-based therapies targeting signaling pathways in cancer. Although these drugs have had a major impact on cancer patient survival, data have implicated kinase-targeting agents such as sunitinib, imatinib, trastuzumab, and sorafenib in adversely affecting cardiac function in a subset of treated individuals. In many cases, adverse cardiac events in the clinic were not anticipated based on preclinical safety evaluation of the molecule. In order to support the development of efficacious and safe kinase inhibitors for the treatment of cancer and other indications, new preclinical approaches and screens are required to predict clinical cardiotoxicity. Laboratory investigations into the underlying molecular mechanisms of heart toxicity induced by these molecules have identified potentially common themes including mitochondrial perturbation and modulation of adenosine monophosphate-activated protein kinase activity. Studies characterizing cardiac-specific kinase knockout mouse models have developed our understanding of the homeostatic role of some of these signaling mediators in the heart. Therefore, when considering kinases as potential future targets or when examining secondary pharmacological interactions of novel kinase inhibitors, these models may help to inform us of the potential adverse cardiac effects in the clinic.


Assuntos
Antineoplásicos/efeitos adversos , Cardiopatias/induzido quimicamente , Neoplasias/tratamento farmacológico , Fosfotransferases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA