Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(19): e202200471, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35972230

RESUMO

The 68-kDa homodimeric 3C-like protease of SARS-CoV-2, Mpro (3CLpro /Nsp5), is a key antiviral drug target. NMR spectroscopy of this large system proved challenging and resonance assignments have remained incomplete. Here we present the near-complete (>97 %) backbone assignments of a C145A variant of Mpro (Mpro C145A ) both with, and without, the N-terminal auto-cleavage substrate sequence, in its native homodimeric state. We also present SILLY (Selective Inversion of thioL and Ligand for NOESY), a simple yet effective pseudo-3D NMR experiment that utilizes NOEs to identify interactions between Cys-thiol or aliphatic protons, and their spatially proximate backbone amides in a perdeuterated protein background. High protection against hydrogen exchange is observed for 10 of the 11 thiol groups in Mpro C145A , even those that are partially accessible to solvent. A combination of SILLY methods and high-resolution triple-resonance NMR experiments reveals site-specific interactions between Mpro , its substrate peptides, and other ligands, which present opportunities for competitive binding studies in future drug design efforts.


Assuntos
COVID-19 , Prótons , Amidas , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Peptídeos/metabolismo , Inibidores de Proteases , SARS-CoV-2 , Solventes , Compostos de Sulfidrila
2.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686030

RESUMO

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Assuntos
Lisostafina/química , Peptidoglicano/química , Staphylococcus aureus/química , Bacteriólise/efeitos dos fármacos , Biofilmes , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Glicina/química , Ligantes , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Domínios de Homologia de src
3.
J Biol Chem ; 293(18): 6672-6681, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559557

RESUMO

Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo-designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b-induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Hemeproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dicroísmo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Proteínas de Membrana Transportadoras/química , Metilaminas/metabolismo , Modelos Moleculares , Oxirredutases N-Desmetilantes/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Estabilidade Proteica , Transporte Proteico , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA