Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727310

RESUMO

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, was performed, and the transcriptomic profiles of both models were combined to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. To assess the modulation of several key secreted factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines were also screened in a collection of plasma samples from patients with FD, and positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD.


Assuntos
Displasia Fibrosa Óssea , Células-Tronco Mesenquimais , Transcriptoma , Humanos , Animais , Células-Tronco Mesenquimais/metabolismo , Transcriptoma/genética , Camundongos , Displasia Fibrosa Óssea/genética , Displasia Fibrosa Óssea/metabolismo , Displasia Fibrosa Óssea/patologia , Masculino , Feminino , Citocinas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Adulto , Pessoa de Meia-Idade
2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529507

RESUMO

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants in GNAS, encoding for Gαs, which leads to excessive cAMP signaling in bone marrow stromal cells (BMSCs). Despite advancements in our understanding of FD pathophysiology, the effect of Gαs activation in the BMSC transcriptome remains unclear, as well as how this translates into their local influence in the lesional microenvironment. In this study, we analyzed changes induced by Gαs activation in BMSC transcriptome and performed a comprehensive analysis of their production of cytokines and other secreted factors. We performed RNAseq of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, and combined their transcriptomic profiles to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. In addition, a comprehensive profile of their secreted cytokines and other factors was performed to identify modulation of several key factors we hypothesized to be involved in FD pathogenesis. We also screened circulating cytokines in a collection of plasma samples from patients with FD, finding positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers. Overall, these data support a pro-inflammatory, pro-osteoclastic behavior of BMSCs bearing hyperactive Gαs variants, and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD.

3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686058

RESUMO

Adoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable. Below, we show that BMSC donor variability can be monitored by IL-10 production of monocytes/macrophages using THP-1 cells (immortalized monocytic leukemia cells) co-cultured with BMSCs. Using a mixed lymphocyte reaction (MLR) assay, we also compared the ability of the different donor BMSCs to suppress T-cell proliferation, another measure of their immune-suppressive ability. We found that the BMSCs from a donor that induced the most IL-10 production were also the most efficient in suppressing T-cell proliferation. Transcriptome studies showed that the most potent BMSC batch also had higher expression of several known key immunomodulatory molecules such as hepatocyte growth factor (HGF), PDL1, and numerous members of the PGE2 pathway, including PTGS1 and TLR4. Multiplex ELISA experiments revealed higher expression of HGF and IL6 by the most potent BMSC donor. Based on these findings, we propose that THP-1 cells may be used to assess BMSC immunosuppressive activity as a product characterization assay.


Assuntos
Medula Óssea , Leucemia Monocítica Aguda , Humanos , Projetos Piloto , Interleucina-10 , Linhagem Celular , Células Estromais
4.
J Tissue Eng ; 14: 20417314231177136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362901

RESUMO

For bone marrow stromal cells (BMSC) to be useful in cartilage repair their propensity for hypertrophic differentiation must be overcome. A single day of TGF-ß1 stimulation activates intrinsic signaling cascades in BMSCs which subsequently drives both chondrogenic and hypertrophic differentiation. TGF-ß1 stimulation upregulates SP7, a transcription factor known to contribute to hypertrophic differentiation, and SP7 remains upregulated even if TGF-ß1 is subsequently withdrawn from the chondrogenic induction medium. Herein, we stably transduced BMSCs to express an shRNA designed to silence SP7, and assess the capacity of SP7 silencing to mitigate hypertrophy. SP7 silencing dampened both hypertrophic and chondrogenic differentiation processes, resulting in diminished microtissue size, impaired glycosaminoglycan production and reduced chondrogenic and hypertrophic gene expression. Thus, while hypertrophic features were dampened by SP7 silencing, chondrogenic differentation was also compromised. We further investigated the role of SP7 in monolayer osteogenic and adipogenic cultures, finding that SP7 silencing dampened characteristic mineralization and lipid vacuole formation, respectively. Overall, SP7 silencing affects the trilineage differentiation of BMSCs, but is insufficient to decouple BMSC hypertrophy from chondrogenesis. These data highlight the challenge of promoting BMSC chondrogenesis whilst simultaneously reducing hypertrophy in cartilage tissue engineering strategies.

5.
Cell Rep Methods ; 3(4): 100460, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159663

RESUMO

Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Saco Vitelino , Células-Tronco Hematopoéticas , Organoides , Atividades Cotidianas
6.
Cells ; 13(1)2023 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201241

RESUMO

Chondrogenic induction of bone-marrow-derived stromal cells (BMSCs) is typically accomplished with medium supplemented with growth factors (GF) from the transforming growth factor-beta (TGF-ß)/bone morphogenetic factor (BMP) superfamily. In a previous study, we demonstrated that brief (1-3 days) stimulation with TGF-ß1 was sufficient to drive chondrogenesis and hypertrophy using small-diameter microtissues generated from 5000 BMSC each. This biology is obfuscated in typical large-diameter pellet cultures, which suffer radial heterogeneity. Here, we investigated if brief stimulation (2 days) of BMSC microtissues with BMP-2 (100 ng/mL) or growth/differentiation factor (GDF-5, 100 ng/mL) was also sufficient to induce chondrogenic differentiation, in a manner comparable to TGF-ß1 (10 ng/mL). Like TGF-ß1, BMP-2 and GDF-5 are reported to stimulate chondrogenic differentiation of BMSCs, but the effects of transient or brief use in culture have not been explored. Hypertrophy is an unwanted outcome in BMSC chondrogenic differentiation that renders engineered tissues unsuitable for use in clinical cartilage repair. Using three BMSC donors, we observed that all GFs facilitated chondrogenesis, although the efficiency and the necessary duration of stimulation differed. Microtissues treated with 2 days or 14 days of TGF-ß1 were both superior at producing extracellular matrix and expression of chondrogenic gene markers compared to BMP-2 and GDF-5 with the same exposure times. Hypertrophic markers increased proportionally with chondrogenic differentiation, suggesting that these processes are intertwined for all three GFs. The rapid action, or "temporal potency", of these GFs to induce BMSC chondrogenesis was found to be as follows: TGF-ß1 > BMP-2 > GDF-5. Whether briefly or continuously supplied in culture, TGF-ß1 was the most potent GF for inducing chondrogenesis in BMSCs.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator 5 de Diferenciação de Crescimento/farmacologia , Medula Óssea , Condrogênese , Fator de Crescimento Transformador beta , Hipertrofia
7.
Biomater Transl ; 3(1): 3-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837340

RESUMO

Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrowderived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other "mesenchymal stem/stromal cells", and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.

8.
Cell Stem Cell ; 29(4): 528-544.e9, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276096

RESUMO

The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects.


Assuntos
Interleucina-6 , Osteogênese , Colinérgicos , Fibras Colinérgicas , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia
9.
Stem Cell Reports ; 17(3): 616-632, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35180395

RESUMO

Bone morphogenetic protein (BMP) cascades are upregulated during bone marrow-derived stromal cell (BMSC) chondrogenesis, contributing to hypertrophy and preventing effective BMSC-mediated cartilage repair. Previous work demonstrated that a proprietary BMP inhibitor prevented BMSC hypertrophy, yielding stable cartilage tissue. Because of the significant therapeutic potential of a molecule capable of hypertrophy blockade, we evaluated the capacity of a commercially available BMP type I receptor inhibitor with similar properties, LDN 193189, to prevent BMSC hypertrophy. Using 14-day microtissue chondrogenic induction cultures we found that LDN 193189 permitted BMSC chondrogenesis but did not prevent hypertrophy. LDN 193189 was sufficiently potent to counter mineralization and adipogenesis in response to exogenous BMP-2 in osteogenic induction cultures. LDN 193189 did not modify BMSC behavior in adipogenic induction cultures. Although LDN 193189 is effective in countering BMP signaling in a manner that influences BMSC fate, this blockade is insufficient to prevent hypertrophy.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Células da Medula Óssea/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Humanos , Hipertrofia/metabolismo , Osteogênese , Pirazóis , Pirimidinas
10.
Cell Stem Cell ; 28(6): 1105-1124.e19, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33915078

RESUMO

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células-Tronco Pluripotentes , Animais , Humanos , Camundongos , Mutação , Organoides , Ductos Pancreáticos , Neoplasias Pancreáticas/genética , Proteômica
11.
Commun Biol ; 4(1): 29, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398032

RESUMO

Virtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-ß (TGF-ß), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 103 BMSC each) to determine the duration of TGF-ß1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-ß1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-ß1 exposure. Despite cessation of TGF-ß1 exposure following 24 hours, intrinsic programming mediated further chondrogenic and hypertrophic BMSC differentiation. These important behaviors are obfuscated by diffusion gradients and heterogeneity in commonly used macro-pellet models (2 × 105 BMSC each). Use of more homogenous micro-pellet models will enable identification of the critical differentiation cues required, likely in the first 24-hours, to generate high quality cartilage-like tissue from BMSC.


Assuntos
Células da Medula Óssea/fisiologia , Condrócitos/fisiologia , Condrogênese , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/fisiologia , Cartilagem Articular/citologia , Humanos , Hipertrofia , Análise de Sequência de RNA
12.
Tissue Eng Part A ; 27(5-6): 336-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32680446

RESUMO

This report describes activity in Europe for the years 2016 and 2017 in the area of cellular and tissue-engineered therapies, excluding hematopoietic stem cell treatments for the reconstitution of hematopoiesis. It is the eighth of its kind and is supported by five established scientific organizations. In 2016 and 2017, a combined 234 teams from 29 countries responded to the cellular and engineered tissue therapy survey; 227 teams reported treating 8236 patients in these 2 years. Indications were categorized in hematology/oncology (40%; predominantly prevention or treatment of graft vs. host disease and hematopoietic graft enhancement), musculoskeletal/rheumatological disorders (29%), cardiovascular disorders (6%), neurological disorders (4%), gastrointestinal disorders (<1%), as well as miscellaneous disorders (20%), which were not assigned to the previous indications. The predominantly used cells were autologous (61%). The majority of autologous cells were used to treat musculoskeletal/rheumatological (44%) disorders, whereas allogeneic cells were mainly used for hematology/oncology (78%). The reported cell types were mesenchymal stem/stromal cells (MSCs) (56%), hematopoietic cells (21%), keratinocytes (7%), chondrocytes (6%) dermal fibroblasts (4%), dendritic cells (2%), and other cell types (4%). Cells were expanded in vitro in 62% of the treatments, sorted in 11% of the cases, and rarely transduced (2%). The processing of cells was outsourced to external facilities in 30% of the cases. Cells were delivered predominantly intravenously or intra-arterially [47%], as suspension [36%], or using a membrane/scaffold (16%). The data are compared with those from previous years to identify trends in a rapidly evolving field. In this edition, the report includes a critical discussion of data collected in the space of orthopedics and the use of MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Europa (Continente) , Humanos , Engenharia Tecidual
13.
Methods Mol Biol ; 2230: 379-396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197027

RESUMO

Populations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells") contain a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). It is now apparent that cells with similar but not identical properties can be isolated from other skeletal compartments (growth plate, periosteum). The biological properties of BMSCs, and these related stem/progenitor cells, are assessed by a variety of assays, both in vitro and in vivo. Application of these assays in an appropriate fashion provide a great deal of information on the role of BMSCs, and the subset of SSCs, in health and in disease.


Assuntos
Células da Medula Óssea/ultraestrutura , Osso e Ossos/ultraestrutura , Ensaio de Unidades Formadoras de Colônias/métodos , Células-Tronco Mesenquimais/ultraestrutura , Animais , Diferenciação Celular/genética , Lâmina de Crescimento/ultraestrutura , Humanos
14.
Stem Cell Res ; 46: 101823, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505898

RESUMO

Muenke syndrome is the leading genetic cause of craniosynostosis and results in a variety of disabling clinical phenotypes. To model the disease and study the pathogenic mechanisms, a human induced pluripotent stem cell (hiPSC) line was generated from a patient diagnosed with Muenke syndrome. Successful reprogramming was validated by morphological features, karyotyping, loss of reprogramming factors, expression of pluripotency markers, mutation analysis and teratoma formation.


Assuntos
Craniossinostoses , Células-Tronco Pluripotentes Induzidas , Craniossinostoses/genética , Humanos , Mutação , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
15.
Stem Cells ; 38(9): 1107-1123, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32442326

RESUMO

Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage-specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm-like cells, lateral plate mesoderm-like cells, and neural crest-like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest-derived OPs-a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.


Assuntos
Diferenciação Celular , Linhagem da Célula , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Crista Neural/citologia , Osteogênese , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Análise de Componente Principal , Transcriptoma/genética
16.
PLoS One ; 15(1): e0227279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999703

RESUMO

Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Cromograninas/genética , Displasia Fibrosa Óssea/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco/fisiologia , Proteínas ADAM/metabolismo , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Cromograninas/metabolismo , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Conjuntos de Dados como Assunto , Displasia Fibrosa Óssea/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Estromais/fisiologia , Regulação para Cima
17.
Ann Thorac Surg ; 109(4): 1142-1149, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31526779

RESUMO

BACKGROUND: Bone marrow stromal or stem cells (BMSCs) remain a promising potential therapy for ischemic cardiomyopathy. The primary objective of this study was to evaluate the safety and feasibility of direct intramyocardial injection of autologous BMSCs in patients undergoing transmyocardial revascularization (TMR) or coronary artery bypass graft surgery (CABG). METHODS: A phase I trial was conducted on adult patients who had ischemic heart disease with depressed left ventricular ejection fraction and who were scheduled to undergo TMR or CABG. Autologous BMSCs were expanded for 3 weeks before the scheduled surgery. After completion of surgical revascularization, BMSCs were directly injected into ischemic myocardium. Safety and feasibility of therapy were assessed. Cardiac functional status and changes in quality of life were evaluated at 1 year. RESULTS: A total of 14 patients underwent simultaneous BMSC and surgical revascularization therapy (TMR+BMSCs = 10; CABG+BMSCs = 4). BMSCs were successfully expanded, and no significant complications occurred as a result of the procedure. Regional contractility in the cell-treated areas demonstrated improvement at 12 months compared with baseline (TMR+BMSCs Δ strain: -4.6% ± 2.1%; P = .02; CABG+MSCs Δ strain: -4.2% ± 6.0%; P = .30). Quality of life was enhanced, with substantial reduction in angina scores at 1 year after treatment (TMR+BMSCs: 1.3 ± 1.2; CABG+MSCs: 1.0 ± 1.4). CONCLUSIONS: In this phase I trial, direct intramyocardial injection of autologous BMSCs in conjunction with TMR or CABG was technically feasible and could be performed safely. Preliminary results demonstrate improved cardiac function and quality of life in patients at 1 year after treatment.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Contração Miocárdica/fisiologia , Isquemia Miocárdica/terapia , Revascularização Miocárdica/métodos , Cuidados Pré-Operatórios/métodos , Função Ventricular Esquerda/fisiologia , Angiografia Coronária , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Miocárdio , Qualidade de Vida
18.
JBMR Plus ; 3(8): e10134, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485549

RESUMO

Somatic gain-of-function mutations of GNAS cause a spectrum of clinical phenotypes, ranging from McCune-Albright syndrome (MAS) to isolated disease of bone, endocrine glands, and more rarely, other organs. In MAS, a syndrome classically characterized by polyostotic fibrous dysplasia (FD), café-au-lait (CAL) skin spots, and precocious puberty, the heterogenity of organ involvement, age of onset, and clinical severity of the disease are thought to reflect the variable size and the random distribution of the mutated cell clone arising from the postzygotic mutation. We report a case of neonatal MAS with hypercortisolism and cholestatic hepatobiliary dysfunction in which bone changes indirectly emanating from the disease genotype, and distinct from FD, led to a fatal outcome. Pulmonary embolism of marrow and bone fragments secondary to rib fractures was the immediate cause of death. Ribs, and all other skeletal segments, were free of changes of typical FD and fractures appeared to be the result of a mild-to-moderate degree of osteopenia. The mutated allele was abundant in the adrenal glands and liver, but not in skin, muscle, and fractured ribs, where it could only be demonstrated using a much more sensitive PNA hybridization probe-based FRET (Förster resonance energy transfer) technique. Histologically, bilateral adrenal hyperplasia and cholestatic disease matched the abundant disease genotype in the adrenals and liver. Based on this case and other sporadic reports, it appears that gain-of-function mutations of GNAS underlie a unique syndromic profile in neonates characterized by CAL skin spots, hypercortisolism, hyperthyroidism, hepatic and cardiac dysfunction, and an absence (or latency) of FD, often with a lethal outcome. Taken together, our and previous cases highlight the phenotypic severity and the diagnostic and therapeutic challenges of MAS in neonates. Furthermore, our case specifically points out how secondary bone changes, unrelated to the direct impact of the mutation, may contribute to the unfavorable outcome of very early-onset MAS.

19.
J Bone Miner Res ; 34(12): 2171-2182, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31295366

RESUMO

Fibrous dysplasia of bone/McCune-Albright syndrome (Polyostotic FD/MAS; OMIM#174800) is a crippling skeletal disease caused by gain-of-function mutations of Gs α. Enhanced bone resorption is a recurrent histological feature of FD and a major cause of fragility of affected bones. Previous work suggests that increased bone resorption in FD is driven by RANKL and some studies have shown that the anti-RANKL monoclonal antibody, denosumab, reduces bone turnover and bone pain in FD patients. However, the effect of RANKL inhibition on the histopathology of FD and its impact on the natural history of the disease remain to be assessed. In this study, we treated the EF1α-Gs αR201C mice, which develop an FD-like phenotype, with an anti-mouse RANKL monoclonal antibody. We found that the treatment induced marked radiographic and microscopic changes at affected skeletal sites in 2-month-old mice. The involved skeletal segments became sclerotic due to the deposition of new, highly mineralized bone within developing FD lesions and showed a higher mechanical resistance compared to affected segments from untreated transgenic mice. Similar changes were also detected in older mice with a full-blown skeletal phenotype. The administration of anti-mouse RANKL antibody arrested the growth of established lesions and, in young mice, prevented the appearance of new ones. However, after drug withdrawal, the newly formed bone was remodelled into FD tissue and the disease progression resumed in young mice. Taken together, our results show that the anti-RANKL antibody significantly affected the bone pathology and natural history of FD in the mouse. Pending further work on the prevention and management of relapse after treatment discontinuation, our preclinical study suggests that RANKL inhibition may be an effective therapeutic option for FD patients. © 2019 American Society for Bone and Mineral Research.


Assuntos
Displasia Fibrosa Óssea/metabolismo , Ligante RANK/antagonistas & inibidores , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Calcificação Fisiológica , Denosumab/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Displasia Fibrosa Óssea/complicações , Displasia Fibrosa Óssea/diagnóstico por imagem , Displasia Fibrosa Óssea/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Camundongos Transgênicos , Osteólise/sangue , Osteólise/complicações , Fator 1 de Elongação de Peptídeos/metabolismo , Fenótipo , Ligante RANK/metabolismo , Ratos
20.
Nat Cell Biol ; 21(7): 801-811, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209293

RESUMO

Despite many reports of putative stem-cell-based treatments in genetic and degenerative disorders or severe injuries, the number of proven stem cell therapies has remained small. In this Review, we survey advances in stem cell research and describe the cell types that are currently being used in the clinic or are close to clinical trials. Finally, we analyse the scientific rationale, experimental approaches, caveats and results underpinning the clinical use of such stem cells.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Embrionárias/transplante , Terapia Genética , Regeneração/genética , Células da Medula Óssea/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Humanos , Regeneração/fisiologia , Pesquisa com Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA