Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L204-L212, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009049

RESUMO

The quantification of airway compliance (Caw) is essential to the study of airway alterations in disease models. However, the required measurements of airway pressure and volume are difficult to acquire in mice. We hypothesized that the inflation limb of full-range pressure-volume (PV) curves could be used to quantify Caw, as it contains a segment where only the airway tree is distended. The study objective was to assess the feasibility of the approach by analysis of full-range PV curves previously collected in three mouse models: an elastase model of emphysema, a genetic model spontaneously developing emphysema (leukotriene C4 synthase knockout; LTC4S-KO), and a bleomycin model of lung fibrosis. Attempts to validate results included Caw change relative to respiratory system compliance (ΔCaw/ΔC), the minute work of breathing (mWOB), and the elastance at 20.5 Hz (Ers_20.5) from prior respiratory mechanics measurements in the same subjects. Caw was estimated at 3% of total compliance in healthy mice or 2.3 ± 1 µL/cmH2O (n = 17). The technique detected changes in models of respiratory obstructive and restrictive diseases relative to control mice as well as differences in the two emphysema models studied. The changes in Caw were consistent with those seen in ΔCaw/ΔC, mWOB, or Ers_20.5, with some variations according to the model, as well as with results reported in the literature in humans and mice. Direct Caw measurements in subjects as small as mice could prove useful to further characterize other respiratory disease models associated with airway remodeling or to assess treatment effects.


Assuntos
Resistência das Vias Respiratórias , Bleomicina/toxicidade , Enfisema Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Transtornos Respiratórios/complicações , Animais , Antibióticos Antineoplásicos/toxicidade , Feminino , Complacência Pulmonar , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enfisema Pulmonar/etiologia , Fibrose Pulmonar/induzido quimicamente , Mecânica Respiratória
2.
FASEB J ; 35(3): e21376, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605487

RESUMO

Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.


Assuntos
Doença Pulmonar Obstrutiva Crônica/etiologia , Receptores de Hidrocarboneto Arílico/deficiência , Idoso , Idoso de 80 Anos ou mais , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Enfisema/etiologia , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Fumar/efeitos adversos
3.
Nat Commun ; 11(1): 5640, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159078

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.


Assuntos
Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mesoderma/metabolismo , Fatores Etários , Idoso , Animais , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/fisiopatologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mesoderma/efeitos dos fármacos , Camundongos , Fatores Sexuais , Sirolimo/administração & dosagem , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Via de Sinalização Wnt
4.
J Vis Exp ; (138)2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-30199038

RESUMO

Electronic-cigarette (e-cig) devices use heat to produce an inhalable aerosol from a liquid (e-liquid) composed mainly of humectants, nicotine, and flavoring chemicals. The aerosol produced includes fine and ultrafine particles, and potentially nicotine and aldehydes, which can be harmful to human health. E-cig users inhale these aerosols and, with the third-generation of e-cig devices, control design features (resistance and voltage) in addition to the choice of e-liquids, and the puffing profile. These are key factors that can significantly impact the toxicity of the inhaled aerosols. E-cig research, however, is challenging and complex mostly due to the absence of standardized assessments and to the numerous varieties of e-cig models and brands, as well as e-liquid flavors and solvents that are available on the market. These considerations highlight the urgent need to harmonize e-cig research protocols, starting with e-cig aerosol generation and characterization techniques. The current study focuses on this challenge by describing a detailed step-by-step e-cig aerosol generation technique with specific experimental parameters that are thought to be realistic and representative of real-life exposure scenarios. The methodology is divided into four sections: preparation, exposure, post-exposure analysis, plus cleaning and maintenance of the device. Representative results from using two types of e-liquid and various voltages are presented in terms of mass concentration, particle size distribution, chemical composition and cotinine levels in mice. These data demonstrate the versatility of the e-cig exposure system used, aside from its value for toxicological studies, as it allows for a broad range of computer-controlled exposure scenarios, including automated representative vaping topography profiles.


Assuntos
Aerossóis/análise , Sistemas Eletrônicos de Liberação de Nicotina/métodos , Vaping/tendências , Humanos
5.
Am J Respir Crit Care Med ; 183(7): 865-75, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20971830

RESUMO

RATIONALE: IL-9 is a pleiotropic cytokine that has multiple effects on structural as well as numerous hematopoietic cells, which are central to the pathogenesis of asthma. OBJECTIVES: The contribution of IL-9 to asthma pathogenesis has thus far been unclear, due to conflicting reports in the literature. These earlier studies focused on the role of IL-9 in acute inflammatory models; here we have investigated the effects of IL-9 blockade during chronic allergic inflammation. METHODS: Mice were exposed to either prolonged ovalbumin or house dust mite allergen challenge to induce chronic inflammation and airway remodeling. MEASUREMENTS AND MAIN RESULTS: We found that IL-9 governs allergen-induced mast cell (MC) numbers in the lung and has pronounced effects on chronic allergic inflammation. Anti-IL-9 antibody-treated mice were protected from airway remodeling with a concomitant reduction in mature MC numbers and activation, in addition to decreased expression of the profibrotic mediators transforming growth factor-ß1, vascular endothelial growth factor, and fibroblast growth factor-2 in the lung. Airway remodeling was associated with impaired lung function in the peripheral airways and this was reversed by IL-9 neutralization. In human asthmatic lung tissue, we identified MCs as the main IL-9 receptor expressing population and found them to be sources of vascular endothelial growth factor and fibroblast growth factor-2. CONCLUSIONS: Our data suggest an important role for an IL-9-MC axis in the pathology associated with chronic asthma and demonstrate that an impact on this axis could lead to a reduction in chronic inflammation and improved lung function in patients with asthma.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Interleucina-9/imunologia , Pulmão/imunologia , Pulmão/patologia , Mastócitos/imunologia , Alérgenos/administração & dosagem , Análise de Variância , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Biópsia por Agulha , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , RNA Mensageiro/análise , Distribuição Aleatória , Testes de Função Respiratória , Estatísticas não Paramétricas
6.
Am J Respir Cell Mol Biol ; 39(1): 26-35, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18258919

RESUMO

Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.


Assuntos
Infecções por Adenoviridae/fisiopatologia , Adenoviridae , Obstrução das Vias Respiratórias/induzido quimicamente , Interleucina-13/efeitos adversos , Adenoviridae/genética , Animais , Técnicas de Cultura de Células , Divisão Celular , Modelos Animais de Doenças , Interleucina-13/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina/efeitos adversos , Testes de Função Respiratória , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Pharmacol Sci ; 103(2): 189-200, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17310074

RESUMO

Cisplatin at 5 mg/kg, i.p. induced an acute (day 1) and delayed (days 2 and 3) emetic response in the ferret that was used to investigate the anti-emetic activity of the non-selective cyclooxygenase inhibitor indomethacin (3 - 30 mg/kg, i.p., three times per day) and two cyclooxygenase-2 inhibitors, DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone; 1 - 10 mg/kg, i.p. administered at 40 and 48 h] and L-745,337 [5-methanesulphonamido-6-(2,4-diflurothiophenyl)-1-indanone; 10 mg/kg, i.p., administered at 40 and 48 h]. Only indomethacin potentiated significantly cisplatin-induced retching + vomiting (P<0.05); DFU antagonized delayed emesis (P<0.05) but the action was not dose-related and L-745,337 was inactive (P>0.05). However, indomethacin alone (30 mg/kg) also induced emesis (P<0.05). The leukotriene biosynthesis inhibitor, MK-886 {3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2,2-dimethylpropanoic acid; 1 - 10 mg/kg, i.p., three times per day} had no action to modify cisplatin-induced emesis (P>0.05). The combination treatment of indomethacin (10 mg/kg, i.p., three times per day) with MK-886 (10 mg/kg, i.p., three times per day) did not antagonize cisplatin-induced acute delayed retching + vomiting and had a different profile compared to the action of dexamethasone (1 mg/kg, i.p., three times per day; P<0.05). Inhibition of the cyclooxygenase and lipoxygenase pathways does not account for the anti-emetic of dexamethasone.


Assuntos
Antineoplásicos , Cisplatino , Inibidores de Ciclo-Oxigenase/farmacologia , Furões/fisiologia , Antagonistas de Leucotrienos/farmacologia , Vômito/induzido quimicamente , Vômito/prevenção & controle , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dexametasona/farmacologia , Combinação de Medicamentos , Febre/induzido quimicamente , Febre/prevenção & controle , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Indanos/farmacologia , Indometacina/farmacologia , Leucotrienos/biossíntese , Masculino , Orquiectomia , Prostaglandinas/biossíntese
8.
Am J Respir Cell Mol Biol ; 33(3): 303-14, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15947424

RESUMO

Overexpression of Gob-5 has previously been linked to goblet cell metaplasia and mucin overproduction in both in vitro and in vivo model systems. In this study, Gob-5 knockout mice were generated and their phenotype was evaluated in two established preclinical models of allergic asthma. We sought to determine whether the Gob-5-null animals could produce less mucus in response to allergic challenge, and whether this would have any impact on reducing goblet cell metaplasia and airway inflammation. We found that in the absence of a proinflammatory stimulus we could not detect an overt phenotypic difference between age and sex-matched knockout and wild-type animals. Allergic challenge with ovalbumin or intranasal administration of interleukin-13 produced a robust allergic response that was similar regardless of genotype. In addition, siRNA-mediated knockdown of CLCA-1 in cultured lung epithelial cells failed to reduce mucin expression in vitro. Thus, in contrast to previously published reports, our findings show that Gob-5 expression is not essential for mucin overproduction in vitro or in murine models of allergic asthma. Furthermore, we have also exploited the use of gene expression array analysis to investigate the possibility that a compensatory mechanism, involving other genes, may act to override the requirement for Gob-5-mediated mucus overproduction.


Assuntos
Asma/fisiopatologia , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Muco/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA