Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096615

RESUMO

Human hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells. Interestingly, differentiated hepatocyte-like HepaRG cells expressed GFP at higher levels than cholangiocyte-like cells. Despite weaker inductions of GFP expression compared to the strong increases in mRNA levels of endogenous genes, we also demonstrated that the biosensor transgenes were induced by prototypical drug inducers benzo(a)pyrene and phenobarbital. In addition, we used the differentiated biosensor HepaRG cells to evidence that pesticide mancozeb triggered selective cytotoxicity of hepatocyte-like cells. Our data demonstrate that these new biosensor HepaRG cells have potential applications in the field of chemicals safety evaluation and the assessment of drug hepatotoxicity.


Assuntos
Técnicas Biossensoriais , Citocromo P-450 CYP1A1/isolamento & purificação , Citocromo P-450 CYP2B6/isolamento & purificação , Citocromo P-450 CYP3A/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Proteínas de Fluorescência Verde/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Lentivirus/genética , Taxa de Depuração Metabólica , Transgenes/genética
2.
Arch Toxicol ; 92(10): 3077-3091, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151596

RESUMO

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5'-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 µM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.


Assuntos
Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Animais , Clorzoxazona/análogos & derivados , Clorzoxazona/farmacocinética , Clorzoxazona/urina , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxilação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Sci Rep ; 8(1): 5963, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654281

RESUMO

Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.


Assuntos
Benzo(a)pireno/efeitos adversos , Etanol/efeitos adversos , Fígado Gorduroso/patologia , Fígado/patologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Poluentes Ambientais/efeitos adversos , Fígado Gorduroso/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Ratos , Peixe-Zebra
4.
Mutagenesis ; 31(1): 43-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26282955

RESUMO

The in situ detection of γH2AX was recently reported to be a promising biomarker of genotoxicity. In addition, the human HepaRG hepatoma cells appear to be relevant for investigating hepatic genotoxicity since they express most of drug metabolizing enzymes and a wild type p53. The aim of this study was to determine whether the automated in situ detection of γH2AX positive HepaRG cells could be relevant for evaluation of genotoxicity after single or long-term repeated in vitro exposure compared to micronucleus assay. Metabolically competent HepaRG cells were treated daily with environmental contaminants and genotoxicity was evaluated after 1, 7 and 14 days. Using these cells, we confirmed the genotoxicity of aflatoxin B1 and benzo(a)pyrene and demonstrated that dimethylbenzanthracene, fipronil and endosulfan previously found genotoxic with comet or micronucleus assays also induced γH2AX phosphorylation. Furthermore, we showed that fluoranthene and bisphenol A induced γH2AX while no effect had been previously reported in HepG2 cells. In addition, induction of γH2AX was observed with some compounds only after 7 days, highlighting the importance of studying long-term effects of low doses of contaminants. Together, our data demonstrate that automated γH2AX detection in metabolically competent HepaRG cells is a suitable high-through put genotoxicity screening assay.


Assuntos
Linhagem Celular Tumoral , Dano ao DNA , Histonas/análise , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Ensaio Cometa , DNA/efeitos dos fármacos , Endossulfano/toxicidade , Células Hep G2 , Histonas/metabolismo , Humanos , Testes para Micronúcleos , Fosforilação , Pirazóis/toxicidade
5.
Drug Metab Dispos ; 42(8): 1235-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24832206

RESUMO

Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Endossulfano/metabolismo , Metoxicloro/metabolismo , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Células Hep G2 , Humanos , Microssomos Hepáticos/metabolismo , Praguicidas/metabolismo , Receptor de Pregnano X , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
6.
Hepatology ; 57(4): 1518-29, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23175273

RESUMO

UNLABELLED: Drugs induce cholestasis by diverse and still poorly understood mechanisms in humans. Early hepatic effects of chlorpromazine (CPZ), a neuroleptic drug known for years to induce intrahepatic cholestasis, were investigated using the differentiated human hepatoma HepaRG cells. Generation of reactive oxygen species (ROS) was detected as early as 15 minutes after CPZ treatment and was associated with an altered mitochondrial membrane potential and disruption of the pericanalicular distribution of F-actin. Inhibition of [3H]-taurocholic acid efflux was observed after 30 minutes and was mostly prevented by N-acetyl cysteine (NAC) cotreatment, indicating a major role of oxidative stress in CPZ-induced bile acid (BA) accumulation. Moreover, 24-hour treatment with CPZ decreased messenger RNA (mRNA) expression of the two main canalicular bile transporters, bile salt export pump (BSEP) and multidrug resistance protein 3 (MDR3). Additional CPZ effects included inhibition of Na+ -dependent taurocholic cotransporting polypeptide (NTCP) expression and activity, multidrug resistance-associated protein 4 (MRP4) overexpression and CYP8B1 inhibition that are involved in BA uptake, basolateral transport, and BA synthesis, respectively. These latter events likely represent hepatoprotective responses which aim to reduce intrahepatic accumulation of toxic BA. Compared to CPZ effects, overloading of HepaRG cells with high concentrations of cholic and chenodeoxycholic acids induced a delayed oxidative stress and, similarly, after 24 hours it down-regulated BSEP and MDR3 in parallel to a decrease of NTCP and CYP8B1 and an increase of MRP4. By contrast, low BA concentrations up-regulated BSEP and MDR3 in the absence of oxidative stress. CONCLUSION: These data provide evidence that, among other mechanisms, oxidative stress plays a major role as both a primary causal and an aggravating factor in the early CPZ-induced intrahepatic cholestasis in human hepatocytes.


Assuntos
Carcinoma Hepatocelular/patologia , Clorpromazina/efeitos adversos , Colestase/induzido quimicamente , Colestase/fisiopatologia , Neoplasias Hepáticas/patologia , Estresse Oxidativo/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Colestase/metabolismo , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Taurocólico/metabolismo
7.
J Pharmacol Exp Ther ; 342(3): 676-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22647274

RESUMO

Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and ß-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Ácido 3-Hidroxibutírico/sangue , Acetaminofen/sangue , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , DNA Mitocondrial/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Glucuronídeos/sangue , Glutationa/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ácido Láctico/sangue , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Obesidade/sangue , Obesidade/patologia , Sulfatos/sangue , Triglicerídeos/sangue
8.
Drug Metab Rev ; 44(1): 34-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21892896

RESUMO

A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial ß-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of ß-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Respiração Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , DNA Mitocondrial/biossíntese , DNA Mitocondrial/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Sistema Imunitário/metabolismo , Fígado/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/ultraestrutura , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/efeitos dos fármacos , Oxirredução , Preparações Farmacêuticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Toxicol Appl Pharmacol ; 258(2): 176-87, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100608

RESUMO

Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24h exposure of these hepatocyte models to 0.05 and 0.25µM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds.


Assuntos
Aflatoxina B1/toxicidade , Dano ao DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Aflatoxina B1/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Hepatócitos/patologia , Humanos , Mutagênicos/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
10.
FEBS J ; 278(22): 4252-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21929725

RESUMO

There has been growing evidence that phase I metabolizing enzymes cytochromes P450 (CYPs) are not only located in the endoplasmic reticulum but also in other subcellular compartments and particularly in mitochondria. The presence of CYPs in these organelles raises questions regarding their metabolic role and their possible deleterious effects on the respiratory chain complexes and mitochondrial DNA. This review will focus on one particular CYP, CYP2E1, which represents a significant source of reactive oxygen species and is involved in the metabolism of small molecule substrates including ethanol, drugs and carcinogens. Since hepatic CYP2E1 expression is increased in different physiopathological situations such as type 2 diabetes, obesity and ethanol intoxication, the presence of significant levels of this CYP within the mitochondria could have major deleterious effects. This review recalls the main data that brought to the fore the presence of CYP2E1 in mitochondria and the mechanism of its targeting in this organelle. The potential pathological consequences linked to the presence of CYP2E1 in mitochondria will be subsequently discussed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Citocromo P-450 CYP2E1/metabolismo , Etanol/toxicidade , Mitocôndrias/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo , Animais , Anti-Infecciosos Locais/toxicidade , Humanos , Transporte Proteico , Espécies Reativas de Oxigênio
11.
Hepatology ; 53(6): 1895-905, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21391224

RESUMO

UNLABELLED: Drug-induced liver injury occurs in general after several weeks and is often unpredictable. It is characterized by a large spectrum of lesions that includes steatosis and phospholipidosis. Many drugs such as amiodarone and tetracycline have been reported to cause phospholipidosis and/or steatosis. In this study, acute and chronic hepatic effects of these two drugs were investigated using well-differentiated human hepatoma HepaRG cells. Accumulation of typical lipid droplets, labeled with Oil Red O, was observed in hepatocyte-like HepaRG cells after repeat exposure to either drug. Amiodarone caused the formation of additional intracytoplasmic vesicles that did not stain in all HepaRG cells. At the electron microscopic level, these vesicles appeared as typical lamellar bodies and were associated with an increase of phosphatidylethanolamine and phosphatidylcholine. A dose-dependent induction of triglycerides (TG) was observed after repeat exposure to either amiodarone or tetracycline. Several genes known to be related to lipogenesis were induced after treatment by these two drugs. By contrast, opposite deregulation of some of these genes (FASN, SCD1, and THSRP) was observed in fat HepaRG cells induced by oleic acid overload, supporting the conclusion that different mechanisms were involved in the induction of steatosis by drugs and oleic acid. Moreover, several genes related to lipid droplet formation (ADFP, PLIN4) were up-regulated after exposure to both drugs and oleic acid. CONCLUSION: Our results show that amiodarone causes phospholipidosis after short-term treatment and, like tetracycline, induces vesicular steatosis after repeat exposure in HepaRG cells. These data represent the first demonstration that drugs can induce vesicular steatosis in vitro and show a direct relationship between TG accumulation and enhanced expression of lipogenic genes.


Assuntos
Amiodarona/farmacologia , Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Tetraciclina/farmacologia , Regulação para Cima/efeitos dos fármacos , Amiodarona/efeitos adversos , Carcinoma Hepatocelular/patologia , Proteínas de Transporte , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ácido Oleico/farmacologia , Perilipina-2 , Perilipina-4 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Tetraciclina/efeitos adversos , Triglicerídeos/metabolismo , Regulação para Cima/genética , Regulação para Cima/fisiologia
12.
Lab Invest ; 91(2): 273-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20856227

RESUMO

The role of hepatocyte apoptosis in the physiopathology of obstructive cholestasis is still controversial. Although some data have strongly suggested that hepatocellular cholestatic injury is due to Fas-mediated hepatocyte apoptosis, some others concluded that necrosis, rather than apoptosis, represents the main type of hepatocyte death in chronic cholestasis. Moreover, it has also been suggested that the reduced liver injury observed in the absence of Fas receptor after bile duct ligation was not due to lower hepatocyte apoptosis but to the indirect role of this receptor in non-hepatocytic cells such as cholangiocytes and inflammatory cells. The aim of this work was therefore to determine whether a protection against cell death limited to hepatocytes could be sufficient to reduce liver injury and delay cholestatic fibrosis. With this purpose, we performed bile duct ligation in transgenic mice overexpressing Bcl-2 in hepatocytes and in wild-type littermates. We found that, compared with necrosis, apoptosis was negligible in this model. Our results also showed that hepatocyte Bcl-2 expression protected hepatocytes against liver injury only in the early steps of the disease. This protection was correlated with reduced mitochondrial dysfunction and lipid peroxidation. However, in contrast to Fas receptor-deficient lpr mice, fibrosis progression was not hampered and liver inflammatory response was not reduced by Bcl-2 overexpression. These results therefore comfort the hypothesis that Fas-mediated apoptotic hepatocyte pathway is not a significant contributing factor to the clinical features observed in cholestasis. Moreover, in the absence of a blunted inflammatory response in transgenic mice, Bcl-2 protection against hepatocyte mitochondrial dysfunction and lipid peroxidation was not sufficient to block fibrosis progression.


Assuntos
Apoptose/fisiologia , Colestase Intra-Hepática/metabolismo , Hepatócitos/metabolismo , Necrose/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Ductos Biliares/cirurgia , Western Blotting , Caspases/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Técnicas Histológicas , Marcação In Situ das Extremidades Cortadas , Ligadura , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Toxicol In Vitro ; 25(2): 475-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21130154

RESUMO

Several cytochromes P450 (CYPs) are not only located in the endoplasmic reticulum but also within mitochondria. One such CYP is CYP2E1 which metabolizes numerous substrates and generates significant amount of reactive oxygen species. The presence of CYP2E1 in these organelles raises questions regarding its physiological role but also its possible deleterious effects in the context of drug-induced cytotoxicity. The aim of our study was to investigate the role of mitochondrial CYP2E1 in the toxicity of acetaminophen and ethanol. Hence the effects of these two compounds in cells expressing CYP2E1 in mitochondria only, or in both endoplasmic reticulum and mitochondria, were compared to those observed in mock-transfected cells. Our results indicated that when acetaminophen or ethanol were used as CYP2E1 substrates, the exclusive localization of CYP2E1 within mitochondria was sufficient to induce reactive oxygen species overproduction, depletion of reduced glutathione, increased expression of mitochondrial Hsp70, mitochondrial dysfunction and cytotoxicity. Importantly, these harmful events happened despite lower cellular level and activity of CYP2E1 when compared to cells expressing CYP2E1 in both endoplasmic reticulum and mitochondria, and this was particularly obvious with acetaminophen. Taken together, these data suggest that mitochondrial CYP2E1 could play a major role in drug-induced oxidative stress and cell demise.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Citocromo P-450 CYP2E1/fisiologia , Etanol/toxicidade , Estresse Oxidativo , Animais , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Glutationa/análise , Proteínas de Choque Térmico HSP70/análise , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/análise
14.
Toxicol Appl Pharmacol ; 249(1): 91-100, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20816883

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are two of the most common heterocyclic aromatic amines (HAA) produced during cooking of meat, fish and poultry. Both HAA produce different tumor profiles in rodents and are suspected to be carcinogenic in humans. In order to better understand the molecular basis of HAA toxicity, we have analyzed gene expression profiles in the metabolically competent human HepaRG cells using pangenomic oligonucleotide microarrays, after either a single (24-h) or a repeated (28-day) exposure to 10 µM PhIP or MeIQx. The most responsive genes to both HAA were downstream targets of the arylhydrocarbon receptor (AhR): CYP1A1 and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 28 days. Accordingly, CYP1A1/1A2 induction in HAA-treated HepaRG cells was prevented by chemical inhibition or small interference RNA-mediated down-regulation of the AhR. Consistently, HAA induced activity of the CYP1A1 promoter, which contains a consensus AhR-related xenobiotic-responsive element (XRE). In addition, several other genes exhibited both time-dependent and compound-specific expression changes with, however, a smaller magnitude than previously reported for the prototypical AhR target genes. These changes concerned genes mainly related to cell growth and proliferation, apoptosis, and cancer. In conclusion, these results identify the AhR gene battery as the preferential target of PhIP and MeIQx in HepaRG cells and further support the hypothesis that intake of HAA in diet might increase human cancer risk.


Assuntos
Imidazóis/administração & dosagem , Quinoxalinas/administração & dosagem , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Aminas/administração & dosagem , Aminas/toxicidade , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/toxicidade , Quinoxalinas/toxicidade
15.
Toxicol Appl Pharmacol ; 245(2): 256-63, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20307560

RESUMO

Human exposure to heterocyclic aromatic amines (HAA) usually occurs through mixtures rather than individual compounds. However, the toxic effects and related mechanisms of co-exposure to HAA in humans remain unknown. We compared the effects of two of the most common HAA, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), individually or in combination, in the metabolically competent human hepatoma HepaRG cells. Various endpoints were measured including cytotoxicity, apoptosis, oxidative stress and DNA damage by the comet assay. Moreover, the effects of PhIP and/or MeIQx on mRNA expression and activities of enzymes involved in their activation and detoxification pathways were evaluated. After a 24h treatment, PhIP and MeIQx, individually and in combination, exerted differential effects on apoptosis, oxidative stress, DNA damage and cytochrome P450 (CYP) activities. Only PhIP induced DNA damage. It was also a stronger inducer of CYP1A1 and CYP1B1 expression and activity than MeIQx. In contrast, only MeIQx exposure resulted in a significant induction of CYP1A2 activity. The combination of PhIP with MeIQx induced an oxidative stress and showed synergistic effects on apoptosis. However, PhIP-induced genotoxicity was abolished by a co-exposure with MeIQx. Such an inhibitory effect could be explained by a significant decrease in CYP1A2 activity which is responsible for PhIP genotoxicity. Our findings highlight the need to investigate interactions between HAA when assessing risks for human health and provide new insights in the mechanisms of interaction between PhIP and MeIQx.


Assuntos
Imidazóis/toxicidade , Quinoxalinas/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase
16.
Am J Pathol ; 175(5): 1929-37, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808650

RESUMO

Accumulating evidence indicates that oxidative stress is involved in the physiopathology of liver fibrogenesis. However, amid the global context of hepatic oxidative stress, the specific role of hepatocyte mitochondrial dysfunction in the fibrogenic process is still unknown. The aim of this study was to determine whether a targeted protection of hepatocytes against mitochondrial dysfunction could modulate fibrosis progression. We induced liver fibrogenesis by chronic carbon tetrachloride treatment (3 or 6 weeks of biweekly injections) in transgenic mice expressing Bcl-2 in their hepatocytes or in normal control mice. Analyses of mitochondrial DNA, respiratory chain complexes, and lipid peroxidation showed that Bcl-2 transgenic animals were protected against mitochondrial dysfunction and oxidative stress resulting from carbon tetrachloride injury. Picrosirius red staining, alpha-smooth muscle actin immunohistochemistry, and real-time PCR for transforming growth factor-beta and collagen alpha-I revealed that Bcl-2 transgenic mice presented reduced fibrosis at early stages of fibrogenesis. However, at later stages increased nonmitochondrial/nonhepatocytic oxidative stress eventually overcame the capacity of Bcl-2 overexpression to prevent the fibrotic process. In conclusion, we demonstrate for the first time that specific protection against hepatocyte mitochondrial dysfunction plays a preventive role in early stages of fibrogenesis, delaying its onset. However, with the persistence of the aggression, this protection is no longer sufficient to impede fibrosis progression.


Assuntos
Hepatócitos/citologia , Hepatócitos/patologia , Mitocôndrias Hepáticas , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Tetracloreto de Carbono/toxicidade , Caspases/metabolismo , Progressão da Doença , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Toxicol Appl Pharmacol ; 231(3): 336-43, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18572215

RESUMO

Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-alpha (TNF-alpha), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 microg/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-alpha. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-alpha secretion) and infliximab (trapping TNF-alpha) likewise attenuated the Jo2-mediated increase in TNF-alpha, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-alpha secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-alpha secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.


Assuntos
Apoptose/fisiologia , Glutationa/deficiência , Hepatite/metabolismo , Ibuprofeno/administração & dosagem , Fator de Necrose Tumoral alfa/sangue , Receptor fas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Hepatite/enzimologia , Hepatite/mortalidade , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Ibuprofeno/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
18.
Am J Physiol Endocrinol Metab ; 294(5): E939-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18349116

RESUMO

Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption.


Assuntos
Leptina/deficiência , Leptina/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Aconitato Hidratase/metabolismo , Adiposidade/genética , Animais , Apoptose/fisiologia , Western Blotting , Composição Corporal/fisiologia , Proteínas de Transporte/metabolismo , Colesterol/sangue , Dieta , Ingestão de Energia/fisiologia , Teste de Tolerância a Glucose , Glutationa/metabolismo , Fígado/patologia , Masculino , Doenças Metabólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Toxicol In Vitro ; 22(4): 887-98, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18299183

RESUMO

The antiretroviral nucleoside reverse-transcriptase inhibitor (NRTI) stavudine (d4T) can induce mild to severe liver injuries such as steatosis (i.e. triglyceride accumulation), steatohepatitis and liver failure. NRTI-induced toxicity has been ascribed to the inhibition of mitochondrial DNA (mtDNA) replication causing mtDNA depletion and respiratory chain dysfunction. This can secondarily impair the tricarboxylic acid cycle and fatty acid oxidation (FAO), thus leading to lactic acidosis and hepatic steatosis. However, NRTIs could also impair mitochondrial function and induce hepatic steatosis through other mechanisms. In this study, we sought to determine whether d4T could inhibit mitochondrial FAO and induce triglyceride accumulation through a mtDNA-independent mechanism. Since human tumoral and non-tumoral hepatic cell lines were unable to efficiently oxidize palmitic acid, the effects of d4T on mitochondrial FAO were assessed on cultured rat hepatocytes. Our results showed that 750 microM of d4T significantly inhibited palmitic acid oxidation after 48 or 72 h of culture, without inducing cell death. Importantly, high concentrations of zidovudine and zalcitabine (two other NRTIs that can induce hepatic steatosis), or beta-aminoisobutyric acid (a d4T metabolite), did not impair FAO in rat hepatocytes. D4T-induced FAO inhibition was observed without mtDNA depletion and lactate production, and was fully prevented with l-carnitine or clofibrate coincubation. l-carnitine also prevented the accretion of neutral lipids within rat hepatocytes. High concentrations of d4T were unable to inhibit FAO on freshly isolated liver mitochondria. Moreover, a microarray analysis was performed to clarify the mechanism whereby d4T can inhibit mitochondrial FAO and induce triglyceride accumulation in rat hepatocytes. The microarray data, confirmed by quantitative real-time PCR analysis, showed that d4T increased the expression of sterol regulatory element-binding protein-1c (SREBP1c) and reduced that of microsomal triglyceride transfer protein (MTP). Finally, d4T-induced alteration of SREBP1c and MTP expression was partially prevented by l-carnitine. Thus, short-term incubation with high concentrations of d4T can rapidly induce accumulation of neutral lipids within rat hepatocytes, which can be fully prevented by l-carnitine. Furthermore, our investigations suggested that lipid accumulation could be the consequence of a dual mechanism, namely a mtDNA-independent impairment of mitochondrial FAO and a reduction of lipid export from the hepatocytes.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Inibidores da Transcriptase Reversa/toxicidade , Estavudina/toxicidade , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Inibidores da Transcriptase Reversa/administração & dosagem , Estavudina/administração & dosagem
20.
J Hepatol ; 46(6): 1075-88, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17399843

RESUMO

BACKGROUND/AIMS: Endoplasmic reticulum (ER)-related unfolded protein response (UPR) is mediated by PKR-like ER kinase (PERK), ATF6 and IRE1. PERK phosphorylates eukaryotic translation initiation factor-2alpha (eIF2alpha) to attenuate protein synthesis, including in NF-kappaB-dependent antiapoptotic proteins. We hypothesized that an altered UPR in the liver may sensitize cirrhotic livers to LPS-induced, TNFalpha-mediated apoptosis. Thus, we examined in vivo UPR and NF-kappaB activity in livers from cirrhotic and normal LPS-challenged rats. METHODS: Livers were harvested in rats that did or did not receive LPS. RESULTS: Under baseline conditions, no UPR was found in normal livers while PERK/eIF2alpha and ATF6 pathways were activated in cirrhotic livers. After LPS, in normal livers, the PERK/eIF2alpha pathway was transiently activated. ATF6 and IRE1 were activated. In cirrhotic livers, the PERK/eIF2alpha pathway remained elevated. ATF6 and IRE1 pathways were altered. LPS-induced, NF-kappaB-dependent antiapoptotic proteins increased in normal livers whereas their expression was blunted at the posttranscriptional level in cirrhotic livers. CONCLUSIONS: Cirrhotic livers exhibit partial UPR activation in the basal state and full UPR, although altered, after LPS challenge. Sustained eIF2alpha phosphorylation, a hallmark of cirrhotic liver UPR, is associated with a lack of LPS-induced accumulation of NF-kappaB-dependent antiapoptotic proteins which may sensitize cirrhotic livers to LPS/TNFalpha-mediated apoptosis.


Assuntos
Apoptose , Fibrose/patologia , Lipopolissacarídeos/metabolismo , Fígado/patologia , Animais , Caspase 3/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fígado/metabolismo , Masculino , Desnaturação Proteica , Dobramento de Proteína , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA