Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 94(7): 3386-3393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277984

RESUMO

Medical instruments that are not autoclavable but may become contaminated with high-risk human papillomaviruses (HPVs) during use must be thoroughly disinfected to avoid the possibility of iatrogenic transmission of infection. There is an expectation that prolonged soaking of instruments in the United States Food and Drug Administration-cleared chemical disinfectant solutions will result in high-level decontamination, but HPV16 and HPV18 are known to be resistant to commonly used formulations. However, they are susceptible to a variety of oxidative agents, including those based on chlorine. Here, we tested the efficacy of homogeneous hypochlorous acid (HOCl) solutions against mature infectious virions of HPV16 and HPV18 dried onto butadiene styrene coupons and ultrasonic probes. Both viruses were inactivated to >4 log reduction value (LRV) after 15 s on coupons and 5 min on ultrasonic probes. Morphologic changes became evident within those contact times by transmission electron microscopy when HPV16 virus-like particles were exposed to HOCl under identical conditions. Mass spectrometry analysis of trypsin-digested products of L1 capsid proteins exposed to HOCl showed that mostly conserved residues were modified by oxidation and that these changes rapidly lead to instability of the protein demonstrable on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Modifications to these residues may contribute to rapid virus inactivation. The use of homogeneous HOCl solutions for HPV decontamination provides a highly effective means of assuring the safety of nonautoclavable medical instruments.


Assuntos
Desinfetantes , Infecções por Papillomavirus , Proteínas do Capsídeo/metabolismo , Desinfetantes/farmacologia , Papillomavirus Humano 16/fisiologia , Humanos , Ácido Hipocloroso/farmacologia , Infecções por Papillomavirus/prevenção & controle
2.
J Feline Med Surg ; 24(2): 123-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33908303

RESUMO

OBJECTIVES: Malodors stemming from soiled cat litter are a major frustration for cat owners, despite the widespread use of absorbent litters with claims of odor control. Technologies for effective litter odor control have not been rigorously evaluated. Here, we report on the effectiveness of a novel litter formulation of 1-monochlorodimethylhydantoin (MCDMH)-modified clinoptilolite zeolite (MCDMH-Z) to control the odors of 3-mercapto-3-methylbutanol (3M3MB) and ammonia, the principal products generated by the enzymatic breakdown of felinine and urea, respectively. METHODS: The efficacy of MCDMH-Z for the odor control of 3M3MB was determined by solid-phase microextraction and gas chromatography mass spectrometry analysis, colorimetric analysis and a sensory panel. Enzyme inhibition was monitored by a colorimetric coupled assay for ammonia. The antimicrobial properties were measured by a reduction in colony-forming units (CFUs). RESULTS: 3M3MB proved highly susceptible to modification by MCDMH-Z granules. Headspace above litter exposed to MCDMH-Z showed no detectable 3M3MB; levels >59 ng were detected in commercially available products. Urease activity decreased by >97% after incubation with MCDMH-Z to 0.14 mg/ml. Cat litter F showed comparable inhibition (0.13 mg/ml); others showed less inhibition, producing up to 4.8 mg/ml of ammonia. MCDMH-Z reduced the CFUs of Proteus vulgaris by six log reduction values in 30 mins; in the same amount of time, no reduction was seen with commercial products tested. The odor control capability of the MCDMH-Z granules was further supported by a sensory panel scoring 3M3MB-spiked litters. CONCLUSIONS AND RELEVANCE: Samples of commercially available litter products showed an effect on malodor, or inhibition of urease, or contained antimicrobial activity; no samples were capable of accomplishing these concurrently. In contrast, MCDMH-Z granules were effective in all three test categories. Control of felinine-derived odors, in particular, has the potential to improve cat owner satisfaction, and may beneficially affect cat behaviors provoked by pheromonally active sulfurous metabolites deposited in the litter.


Assuntos
Anti-Infecciosos , Odorantes , Animais , Gatos , Cisteína/análogos & derivados , Cisteína/análise , Cisteína/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Odorantes/análise
3.
Bioorg Med Chem Lett ; 18(8): 2610-4, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18394886

RESUMO

The synthesis and Delta F508-CFTR corrector activity of a 148-member methylbithiazole-based library are reported. Synthetic routes were devised and optimized to generate methylbithiazole analogs in four steps. Corrector potency and efficacy were assayed using epithelial cells expressing human Delta F508-CFTR. These structure-activity data establish that the bithiazole substructure plays a critical function; eight novel methylbithiazole correctors were identified with low micromolar potencies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Aminação , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química
4.
Mol Pharmacol ; 67(5): 1797-807, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15722457

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel cause cystic fibrosis. The delta F508 mutation produces defects in channel gating and cellular processing, whereas the G551D mutation produces primarily a gating defect. To identify correctors of gating, 50,000 diverse small molecules were screened at 2.5 microM (with forskolin, 20 microM) by an iodide uptake assay in epithelial cells coexpressing delta F508-CFTR and a fluorescent halide indicator (yellow fluorescent protein-H148Q/I152L) after delta F508-CFTR rescue by 24-h culture at 27 degrees C. Secondary analysis and testing of >1000 structural analogs yielded two novel classes of correctors of defective delta F508-CFTR gating ("potentiators") with nanomolar potency that were active in human delta F508 and G551D cells. The most potent compound of the phenylglycine class, 2-[(2-1H-indol-3-yl-acetyl)-methylamino]-N-(4-isopropylphenyl)-2-phenylacetamide, reversibly activated delta F508-CFTR in the presence of forskolin with K(a) approximately 70 nM and also activated the CFTR gating mutants G551D and G1349D with K(a) values of approximately 1100 and 40 nM, respectively. The most potent sulfonamide, 6-(ethylphenylsulfamoyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid cycloheptylamide, had K(a) approximately 20 nM for activation of delta F508-CFTR. In cell-attached patch-clamp experiments, phenylglycine-01 (PG-01) and sulfonamide-01 (SF-01) increased channel open probability >5-fold by the reduction of interburst closed time. An interesting property of these compounds was their ability to act in synergy with cAMP agonists. Microsome metabolism studies and rat pharmacokinetic analysis suggested significantly more rapid metabolism of PG-01 than SF-03. Phenylglycine and sulfonamide compounds may be useful for monotherapy of cystic fibrosis caused by gating mutants and possibly for a subset of delta F508 subjects with significant delta F508-CFTR plasma-membrane expression.


Assuntos
Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glicina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Canais de Cloreto/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Relação Dose-Resposta a Droga , Glicina/análogos & derivados , Humanos , Ativação do Canal Iônico/fisiologia , Ratos , Ratos Endogâmicos F344 , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA