Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
FEBS Lett ; 598(11): 1335-1353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485451

RESUMO

Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.


Assuntos
Imunidade Inata , Inflamassomos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Humanos , Animais , Epitélio/imunologia , Epitélio/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Homeostase/imunologia
2.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642996

RESUMO

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Assuntos
Fibrose Cística , Eucariotos , Humanos , Fator 2 de Elongação de Peptídeos , Inflamassomos , Citoplasma , Proteínas NLR
3.
Clin Transl Radiat Oncol ; 39: 100575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36686562

RESUMO

Introduction: Active Breathing Control (ABC) is a motion management strategy that facilitates reproducible breath-hold for thoracic radiotherapy (RT), which may reduce radiation dose to organs at risk (OARs). Reduction of radiation-induced toxicity is of high importance in younger patients. However, there is little published literature on the feasibility of ABC in this group. The purpose of this study was to report our experience of using ABC for paediatric and teenage patients. Methods: Patients ≤18 years referred for thoracic RT using ABC at our centre from 2013-2021 were identified. Electronic records were retrospectively reviewed to obtain information on diagnosis, RT dose and technique, OAR dosimetry, tolerability of ABC, post-treatment imaging and early toxicity rates. Results: 12 patients completed RT and were able to comply with ABC during planning and for the duration of RT. Median age was 15.5 years (10-18 years). Diagnoses were: Hodgkin lymphoma (n = 5), mediastinal B-cell lymphoma (n = 1), Ewing sarcoma (n = 5) and rhabdomyosarcoma (n = 1). For mediastinal RT cases (n = 6), median dose delivered was 30.6Gy(19.8-40Gy), median mean heart dose was 11.4Gy(4.8-19.4Gy), median mean lung dose was 9.9Gy(5.7-14.5Gy) and mean lung V20 was 10.9%. For ipsilateral RT cases, (n = 6), median hemithorax and total doses to primary tumour were 18Gy(15-20Gy) and 52.2Gy(36-60Gy) respectively. Median mean heart dose was 19.5Gy(10.6-33.2Gy) and median mean lung dose was 17.7Gy(16.3-30.5Gy). Mean bilateral lung V20 was 39.6%. Median mean contralateral lung dose was 5.2Gy(3.5-11.6Gy) and mean contralateral lung V20 was 1.5%. At a median follow-up of 36 months, only 1 patient had symptomatic radiation pneumonitis having received further thoracic RT following relapse. Conclusions: ABC is feasible and well tolerated in younger patients receiving RT. Children as young as 10 years are able to comply. Use of ABC results in OAR dosimetry which is comparable to similar data in adults and can facilitate RT for extensive thoracic sarcoma.

4.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36129453

RESUMO

Nucleotide-binding oligomerization domain (NBD), leucine-rich repeat (LRR) containing protein family (NLRs) are intracellular pattern recognition receptors that mediate innate immunity against infections. The endothelium is the first line of defense against blood-borne pathogens, but it is unclear which NLRs control endothelial cell (EC) intrinsic immunity. Here, we demonstrate that human ECs simultaneously activate NLRP1 and CARD8 inflammasomes in response to DPP8/9 inhibitor Val-boro-Pro (VbP). Enterovirus Coxsackie virus B3 (CVB3)-the most common cause of viral myocarditis-predominantly activates CARD8 in ECs in a manner that requires viral 2A and 3C protease cleavage at CARD8 p.G38 and proteasome function. Genetic deletion of CARD8 in ECs and human embryonic stem cell-derived cardiomyocytes (HCMs) attenuates CVB3-induced pyroptosis, inflammation, and viral propagation. Furthermore, using a stratified endothelial-cardiomyocyte co-culture system, we demonstrate that deleting CARD8 in ECs reduces CVB3 infection of the underlying cardiomyocytes. Our study uncovers the unique role of CARD8 inflammasome in endothelium-intrinsic anti-viral immunity.


Assuntos
Sistema Cardiovascular , Inflamassomos , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Sistema Cardiovascular/metabolismo , Humanos , Inflamassomos/metabolismo , Leucina , Proteínas de Neoplasias/metabolismo , Nucleotídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteases Virais
5.
Science ; 377(6603): 328-335, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857590

RESUMO

Human NLRP1 (NACHT, LRR, and PYD domain-containing protein 1) is an innate immune sensor predominantly expressed in the skin and airway epithelium. Here, we report that human NLRP1 senses the ultraviolet B (UVB)- and toxin-induced ribotoxic stress response (RSR). Biochemically, RSR leads to the direct hyperphosphorylation of a human-specific disordered linker region of NLRP1 (NLRP1DR) by MAP3K20/ZAKα kinase and its downstream effector, p38. Mutating a single ZAKα phosphorylation site in NLRP1DR abrogates UVB- and ribotoxin-driven pyroptosis in human keratinocytes. Moreover, fusing NLRP1DR to CARD8, which is insensitive to RSR by itself, creates a minimal inflammasome sensor for UVB and ribotoxins. These results provide insight into UVB sensing by human skin keratinocytes, identify several ribotoxins as NLRP1 agonists, and establish inflammasome-driven pyroptosis as an integral component of the RSR.


Assuntos
Inflamassomos , MAP Quinase Quinase Quinases , Proteínas NLR , Piroptose , Ribossomos , Estresse Fisiológico , Anisomicina/toxicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , MAP Quinase Quinase Quinases/metabolismo , Mutação , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Piroptose/efeitos dos fármacos , Piroptose/efeitos da radiação , Ribossomos/efeitos dos fármacos , Ribossomos/efeitos da radiação , Raios Ultravioleta
6.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594856

RESUMO

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Células Epiteliais , Inflamassomos , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
7.
Nat Commun ; 12(1): 188, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420028

RESUMO

Nod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells-a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/química , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Inflamassomos/genética , Inflamação , Simulação de Acoplamento Molecular , Mutação , Proteínas NLR , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Transdução de Sinais
8.
Oncologist ; 26(2): 99-e217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33141975

RESUMO

LESSONS LEARNED: The combination of enobosarm and pembrolizumab was well tolerated and showed a modest clinical benefit rate of 25% at 16 weeks. Future trials investigating androgen receptor-targeted therapy in combination with immune checkpoint inhibitors are warranted. BACKGROUND: Luminal androgen receptor is a distinct molecular subtype of triple-negative breast cancer (TNBC) defined by overexpression of androgen receptor (AR). AR-targeted therapy has shown modest activity in AR-positive (AR+) TNBC. Enobosarm (GTx-024) is a nonsteroidal selective androgen receptor modulator (SARM) that demonstrates preclinical and clinical activity in AR+ breast cancer. The current study was designed to explore the safety and efficacy of the combination of enobosarm and pembrolizumab in patients with AR+ metastatic TNBC (mTNBC). METHODS: This study was an open-label phase II study for AR+ (≥10%, 1+ by immunohistochemistry [IHC]) mTNBC. Eligible patients received pembrolizumab 200 mg intravenous (IV) every 3 weeks and enobosarm 18 mg oral daily. The primary objective was to evaluate the safety of enobosarm plus pembrolizumab and determine the response rate. Peripheral blood, tumor biopsies, and stool samples were collected for correlative analysis. RESULTS: The trial was stopped early because of the withdrawal of GTx-024 drug supply. Eighteen patients were enrolled, and 16 were evaluable for responses. Median age was 64 (range 36-81) years. The combination was well tolerated, with only a few grade 3 adverse events: one dry skin, one diarrhea, and one musculoskeletal ache. The responses were 1 of 16 (6%) complete response (CR), 1 of 16 (6%) partial response (PR), 2 of 16 (13%) stable disease (SD), and 12 of 16 (75%) progressive disease (PD). Response rate (RR) was 2 of 16 (13%). Clinical benefit rate (CBR) at 16 weeks was 4 of 16 (25%). Median follow-up was 24.9 months (95% confidence interval [CI], 17.5-30.9). Progression-free survival (PFS) was 2.6 months (95% CI, 1.9-3.1) and overall survival (OS) was 25.5 months (95% CI, 10.4-not reached [NR]). CONCLUSION: The combination of enobosarm and pembrolizumab was well tolerated, with a modest clinical benefit rate of 25% at 16 weeks in heavily pretreated AR+ TNBC without preselected programmed death ligand-1 (PD-L1). Future clinical trials combining AR-targeted therapy with immune checkpoint inhibitor (ICI) for AR+ TNBC warrant investigation.


Assuntos
Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Anilidas , Anticorpos Monoclonais Humanizados , Humanos , Pessoa de Meia-Idade , Receptores Androgênicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Oncologist ; 26(3): e382-e393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098195

RESUMO

BACKGROUND: In this phase II clinical trial, we evaluated the efficacy of the nonanthracycline combination of carboplatin and nab-paclitaxel in early stage triple-negative breast cancer (TNBC). PATIENTS AND METHODS: Patients with newly diagnosed stage II-III TNBC (n = 69) were treated with neoadjuvant carboplatin (area under the curve 6) every 28 days for four cycles plus nab-paclitaxel (100 mg/m2 ) weekly for 16 weeks. Pathological complete response (pCR) and residual cancer burden (RCB) were analyzed with germline mutation status, tumor-infiltrating lymphocytes (TILs), TNBC molecular subtype, and GeparSixto immune signature (GSIS). RESULTS: Sixty-seven patients were evaluable for safety and response. Fifty-three (79%) patients experienced grade 3/4 adverse events, including grade 3 anemia (43%), neutropenia (39%), leukopenia (15%), thrombocytopenia (12%), fatigue (7%), peripheral neuropathy (7%), neutropenia (16%), and leukopenia (1%). Twenty-four patients (35%) had at least one dose delay, and 50 patients (72%) required dose reduction. Sixty-three (94%) patients completed scheduled treatment. The responses were as follows: 32 of 67 patients (48%) had pCR (RCB 0), 10 of 67 (15%) had RCB I, 19 of 67 (28%) had RCB II, 5 of 67 (7%) had RCB III, and 1 of 67 (2%) progressed and had no surgery. Univariate analysis showed that immune-hot GSIS and DNA repair defect (DRD) were associated with higher pCR with odds ratios of 4.62 (p = .005) and 4.76 (p = .03), respectively, and with RCB 0/I versus RCB II/III with odds ratio 4.80 (p = .01). Immune-hot GSIS was highly correlated with DRD status (p = .03), TIL level (p < .001), and TNBC molecular subtype (p < .001). After adjusting for age, race, stage, and grade, GSIS remained associated with higher pCR and RCB class 0/I versus II/III with odds ratios 7.19 (95% confidence interval [CI], 2.01-25.68; p = .002) and 8.95 (95% CI, 2.09-38.23; p = .003), respectively. CONCLUSION: The combination of carboplatin and nab-paclitaxel for early stage high-risk TNBC showed manageable toxicity and encouraging antitumor activity. Immune-hot GSIS is associated with higher pCR rate and RCB class 0/1. This study provides an additional rationale for using nonanthracycline platinum-based therapy for future neoadjuvant trials in early stage TNBCs. Clinical trial identification number: NCT01525966 IMPLICATIONS FOR PRACTICE: Platinum is an important neoadjuvant chemotherapy agent for treatment of early stage triple-negative breast cancer (TNBC). In this study, carboplatin and nab-paclitaxel were well tolerated and highly effective in TNBC, resulting in pathological complete response of 48%. In univariate and multivariate analyses adjusting for age, race, tumor stage and grade, "immune-hot" GeparSixto immune signature (GSIS) and DNA repair defect (DRD) were associated with higher pathological complete response (pCR) and residual cancer burden class 0/1. The association of immune-hot GSIS with higher pCR holds promise for de-escalating neoadjuvant chemotherapy for patients with early stage TNBC. Although GSIS is not routinely used in clinic, further development of this immune signature into a clinically applicable assay is indicated.


Assuntos
Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas , Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/uso terapêutico , Humanos , Paclitaxel/efeitos adversos , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
10.
Science ; 370(6521)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33093214

RESUMO

Immune sensor proteins are critical to the function of the human innate immune system. The full repertoire of cognate triggers for human immune sensors is not fully understood. Here, we report that human NACHT, LRR, and PYD domains-containing protein 1 (NLRP1) is activated by 3C proteases (3Cpros) of enteroviruses, such as human rhinovirus (HRV). 3Cpros directly cleave human NLRP1 at a single site between Glu130 and Gly131 This cleavage triggers N-glycine-mediated degradation of the autoinhibitory NLRP1 N-terminal fragment via the cullinZER1/ZYG11B complex, which liberates the activating C-terminal fragment. Infection of primary human airway epithelial cells by live human HRV triggers NLRP1-dependent inflammasome activation and interleukin-18 secretion. Our findings establish 3Cpros as a pathogen-derived trigger for the human NLRP1 inflammasome and suggest that NLRP1 may contribute to inflammatory diseases of the airway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cisteína Endopeptidases/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Mucosa Respiratória/virologia , Rhinovirus/enzimologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Glutamina/química , Glutamina/metabolismo , Glicina/química , Glicina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-18/metabolismo , Proteínas NLR , Proteólise
11.
Arch Dis Child ; 105(6): 530-532, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32094246

RESUMO

We aimed to evaluate a screening programme for infection in unaccompanied asylum seeking children and young people against national guidance and to described the rates of identified infection in the cohort. The audit was conducted by retrospective case note review of routinely collected, anonymised patient data from all UASC referred between January 2016 and December 2018 in two paediatric infectious diseases clinics.There were 252 individuals from 19 countries included in the study, of these 88% were male, and the median age was 17 years (range 11-18). Individuals from Afghanistan, Eritrea and Albania constituted the majority of those seen. Median time between arriving in the UK and infection screening was 6 months (IQR 4-10 months, data available on 197 UASC). There were 94% (238/252) of cases tested for tuberculosis (TB), of whom 23% (55/238) were positive, including three young people with TB disease. Of those tested for hepatitis B, 4.8% (10/210) were positive, 0.5% (1/121) were positive for hepatitis C and of 252 tested, none were positive for HIV. Of the 163 individuals who were tested for schistosomiasis, 27 were positive (16%).The majority of patients were appropriately tested for infections with a high rate of identification of treatable asymptomatic infection. Infections were of both individual and public health significance. Our findings of clinically significant rates of treatable infections in UASC highlight the importance of infection screening for all in this vulnerable patient group.


Assuntos
Programas de Rastreamento , Refugiados/estatística & dados numéricos , Adolescente , Criança , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Humanos , Masculino , Auditoria Médica , Estudos Retrospectivos , Esquistossomose/diagnóstico , Esquistossomose/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Reino Unido/epidemiologia
12.
Breast Cancer Res ; 21(1): 119, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703728

RESUMO

BACKGROUND: Alteration of the PI3K/AKT/mTOR pathway is a common genomic abnormality detected in triple-negative breast cancer (TNBC). Everolimus acts synergistically with eribulin in TNBC cell lines and xenograft models. This phase I trial was designed to test the safety and tolerability of combining eribulin and everolimus in patients with metastatic TNBC. METHODS: The primary objective of this study was to evaluate the safety and toxicities of the combination. Patients with metastatic TNBC who had up to four lines of prior chemotherapies were enrolled. The combination of eribulin and everolimus was tested using three dosing levels: A1 (everolimus 5 mg daily; eribulin 1.4 mg/m2 days 1 and 8 every 3 weeks), A2 (everolimus 7.5 mg daily; eribulin 1.4 mg/m2, days 1 and 8 every 3 weeks), and B1 (everolimus 5 mg daily; eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks). RESULTS: Twenty-seven patients with median age 55 years were enrolled. Among 8 evaluable patients who received dose level A1, 4 had dose-limiting toxicities (DLTs). Among 3 evaluable patients treated with dose level A2, 2 had DLTs. Among 12 evaluable patients who received dose level B1, 4 had DLTs. The DLTs were neutropenia, stomatitis, and hyperglycemia. Over the study period, 59% had a ≥ grade 3 toxicity, 44% had ≥ grade 3 hematologic toxicities, and 22% had grade 4 hematologic toxicities. The most common hematological toxicities were neutropenia, leukopenia, and lymphopenia. Thirty-three percent had grade 3 non-hematologic toxicities. The most common non-hematological toxicities were stomatitis, hyperglycemia, and fatigue. The median number of cycles completed was 4 (range 0-8). Among 25 eligible patients, 9 patients (36%) achieved the best response as partial response, 9 (36%) had stable disease, and 7 (28%) had progression. The median time to progression was 2.6 months (95% CI [2.1, 4.0]), and median overall survival (OS) was 8.3 months (95% CI [5.5, undefined]). CONCLUSION: Eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks with everolimus 5 mg daily was defined as the highest dose with acceptable toxicity (RP2D). The combination is safe, and efficacy is modest. A post hoc analysis showed that participants that used dexamethasone mouthwash stayed on treatment for one additional cycle. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02120469. Registered 18 April 2014.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Everolimo/administração & dosagem , Everolimo/efeitos adversos , Fadiga/induzido quimicamente , Feminino , Furanos/administração & dosagem , Furanos/efeitos adversos , Humanos , Estimativa de Kaplan-Meier , Cetonas/administração & dosagem , Cetonas/efeitos adversos , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Estomatite/induzido quimicamente , Neoplasias de Mama Triplo Negativas/genética
13.
J Biol Chem ; 293(49): 18864-18878, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30291141

RESUMO

The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1ß. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Ácidos Borônicos/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dipeptídeos/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Inflamação/genética , Mutação de Sentido Incorreto , Proteínas NLR , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos
14.
J Invest Dermatol ; 138(2): 291-300, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28964717

RESUMO

Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease.


Assuntos
Hipopigmentação/genética , Ceratodermia Palmar e Plantar/genética , Melaninas/biossíntese , Melanócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Biópsia , Cisteína/genética , Análise Mutacional de DNA , Feminino , Fibroblastos , Mutação em Linhagem Germinativa , Células HEK293 , Homozigoto , Humanos , Hipopigmentação/diagnóstico , Hipopigmentação/patologia , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/patologia , Masculino , Linhagem , Diester Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Pirofosfatases/metabolismo , Índice de Gravidade de Doença , Pele/citologia , Pele/patologia , Sequenciamento do Exoma
15.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662089

RESUMO

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma/genética , Predisposição Genética para Doença , Inflamassomos/metabolismo , Ceratose/genética , Neoplasias Cutâneas/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Carcinoma/patologia , Cromossomos Humanos Par 17/genética , Epiderme/patologia , Mutação em Linhagem Germinativa , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Inflamassomos/genética , Interleucina-1/metabolismo , Ceratose/patologia , Proteínas NLR , Comunicação Parácrina , Linhagem , Domínios Proteicos , Pirina/química , Transdução de Sinais , Neoplasias Cutâneas/patologia , Síndrome
16.
J Invest Dermatol ; 134(10): 2630-2638, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24662767

RESUMO

Cutaneous SCC (cSCC) is the most frequently occuring skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here, we use massively parallel exome and targeted level sequencing of 132 sporadic cSCCs and of 39 squamoproliferative lesions and cSCCs arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples, to identify NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib-induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC, suggesting polyclonal origin. Immunohistochemical analysis using an antibody specific to nuclear NOTCH1 correlates with mutation status in sporadic cSCCs, and regions of NOTCH1 loss or downregulation are frequently observed in normal-looking skin. Our data indicate that NOTCH1 acts as a gatekeeper in human cSCC.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Mutação/genética , Receptor Notch1/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Biópsia , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Indóis/uso terapêutico , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Dermatopatias/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sulfonamidas/uso terapêutico , Vemurafenib
17.
Chemistry ; 19(29): 9578-91, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23733242

RESUMO

Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azidas/química , Azidas/farmacologia , Cisplatino/química , Adutos de DNA/química , DNA/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Platina/química , Pró-Fármacos/química , Piridinas/química , Química Farmacêutica , Cisplatino/farmacologia , Cristalografia por Raios X , Humanos , Luz
18.
Mol Cancer Ther ; 11(9): 1894-904, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710878

RESUMO

Photoactivatable Pt(IV) diazido complexes have unusual photobiologic properties. We show here that trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] complex 3 is a potent photoactivated cytotoxin toward human cancer cells in culture, with an average IC(50) value in 13 cell lines of 55 ± 28 µmol/L after 30 minutes (0.12 mW/cm(2)) photoactivation with UVA, although visible light was also effective. Photoactivated complex 3 was noncross-resistant to cisplatin in 3 of 4 resistant cell lines. Cell swelling but very little blebbing was seen for HL60 cells treated with irradiated complex 3. Unlike cisplatin and etoposide, both of which cause apoptosis in HL60 cells, no apoptosis was observed for UVA-activated complex 3 by the Annexin V/propidium iodide flow cytotometry assay. Changes in the levels of the autophagic proteins LC3B-II and p62 in HL60 cells treated with UVA-activated complex 3 indicate autophagy is active during cell death. In a clonogenic assay with the SISO human cervix cancer cell line, 3 inhibited colony formation when activated by UVA irradiation. Antitumor activity of complex 3 in mice bearing xenografted OE19 esophageal carcinoma tumors was photoaugmented by visible light. Insights into the novel reaction pathways of complex 3 have been obtained from (14)N{(1)H} nuclear magnetic resonance studies, which show that photoactivation pathways can involve release of free azide in buffered solution. Density functional theory (DFT) and time-dependent DFT calculations revealed the dissociative character of singlet and triplet excited states of complex 3, which gives rise to reactive, possibly cytotoxic azidyl radicals.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Compostos Organoplatínicos/farmacologia , Raios Ultravioleta , Animais , Antineoplásicos/efeitos da radiação , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/análogos & derivados , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HL-60 , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Compostos Organoplatínicos/efeitos da radiação , Compostos Organoplatínicos/uso terapêutico , Processos Fotoquímicos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Transl Med ; 10: 42, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22400902

RESUMO

BACKGROUND: MicroRNAs (miRNAs) have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC), and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. METHODS: The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT) followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers. RESULTS: More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients. CONCLUSIONS: Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , MicroRNAs/sangue , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Recidiva , Reprodutibilidade dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA