Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cells ; 13(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39056803

RESUMO

Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of ß-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.


Assuntos
Diferenciação Celular , Cristalino , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Diferenciação Celular/genética , Animais , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Transdução de Sinais , Perfilação da Expressão Gênica , Transcriptoma/genética
2.
Dev Biol ; 467(1-2): 1-13, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858001

RESUMO

Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Cristalino/embriologia , PTEN Fosfo-Hidrolase/deficiência , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
3.
Clin Cancer Res ; 26(1): 122-134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767563

RESUMO

PURPOSE: Circulating tumor cells (CTCs) serve as noninvasive tumor biomarkers in many types of cancer. Our aim was to detect CTCs from patients with neuroblastoma for use as predictive and pharmacodynamic biomarkers. EXPERIMENTAL DESIGN: We collected matched blood and bone marrow samples from 40 patients with neuroblastoma to detect GD2 +/CD45- neuroblastoma CTCs from blood and disseminated tumor cells (DTCs) from bone marrow using the Imagestream Imaging flow cytometer (ISx). In six cases, circulating free DNA (cfDNA) extracted from plasma isolated from the CTC sample was analyzed by high-density single-nucleotide polymorphism (SNP) arrays. RESULTS: CTCs were detected in 26 of 42 blood samples (1-264/mL) and DTCs in 25 of 35 bone marrow samples (57-291,544/mL). Higher numbers of CTCs in patients with newly diagnosed, high-risk neuroblastoma correlated with failure to obtain a complete bone marrow (BM) metastatic response after induction chemotherapy (P < 0.01). Ex vivo Nutlin-3 (MDM2 inhibitor) treatment of blood and BM increased p53 and p21 expression in CTCs and DTCs compared with DMSO controls. In five of six cases, cfDNA analyzed by SNP arrays revealed copy number abnormalities associated with neuroblastoma. CONCLUSIONS: This is the first study to show that CTCs and DTCs are detectable in neuroblastoma using the ISx, with concurrently extracted cfDNA used for copy number profiling, and may be useful as pharmacodynamic biomarkers in early-phase clinical trials. Further investigation is required to determine whether CTC numbers are predictive biomarkers of BM response to first-line induction chemotherapy.


Assuntos
Biomarcadores Tumorais/sangue , Medula Óssea/patologia , Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Imidazóis/farmacologia , Células Neoplásicas Circulantes/patologia , Neuroblastoma/patologia , Piperazinas/farmacologia , Biomarcadores Tumorais/genética , Medula Óssea/efeitos dos fármacos , Variações do Número de Cópias de DNA , Humanos , Células Neoplásicas Circulantes/efeitos dos fármacos , Neuroblastoma/sangue , Neuroblastoma/tratamento farmacológico , Valor Preditivo dos Testes , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores
4.
Hum Genet ; 138(11-12): 1391-1407, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691004

RESUMO

FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.


Assuntos
Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Homeodomínio/metabolismo , Microftalmia/prevenção & controle , PTEN Fosfo-Hidrolase/deficiência , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/deficiência , Transcriptoma , Animais , Diferenciação Celular , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Microftalmia/etiologia , Microftalmia/patologia , Fosforilação , Transdução de Sinais
5.
Dev Biol ; 428(1): 118-134, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552735

RESUMO

Tissue development and regeneration involve high-ordered morphogenetic processes that are governed by elements of the cytoskeleton in conjunction with cell adhesion molecules. Such processes are particularly important in the lens whose structure dictates its function. Studies of our lens-specific N-cadherin conditional knockout mouse (N-cadcKO) revealed an essential role for N-cadherin in the migration of the apical tips of differentiating lens fiber cells along the apical surfaces of the epithelium, a region termed the Epithelial Fiber Interface (EFI), that is necessary for normal fiber cell elongation and the morphogenesis. Studies of the N-cadcKO lens suggest that N-cadherin function in fiber cell morphogenesis is linked to the activation of Rac1 and myosin II, both signaling pathways central to the regulation of cell motility including determining the directionality of cellular movement. The absence of N-cadherin did not disrupt lateral contacts between fiber cells during development, and the maintenance of Aquaporin-0 and increased expression of EphA2 at cell-cell interfaces suggests that these molecules may function in this role. E-cadherin was maintained in newly differentiating fiber cells without interfering with expression of lens-specific differentiation proteins but was not able to replace N-cadherin function in these cells. The dependence of migration of the fiber cell apical domains along the EFI for lens morphogenesis on N-cadherin provides new insight into the process of tissue development.


Assuntos
Caderinas/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Cristalino/embriologia , Morfogênese/fisiologia , Animais , Aquaporinas/metabolismo , Caderinas/genética , Movimento Celular/genética , Ativação Enzimática , Epitélio/fisiologia , Proteínas do Olho/metabolismo , Cristalino/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/metabolismo , Neuropeptídeos/metabolismo , Receptor EphA2/biossíntese , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Dev Biol ; 410(2): 150-163, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26764128

RESUMO

Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIß expression in the lens fiber cells.


Assuntos
Sobrevivência Celular/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cristalino/embriologia , Sistema de Sinalização das MAP Quinases , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Vis ; 20: 1491-517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489224

RESUMO

PURPOSE: The ocular lens contains only two cell types: epithelial cells and fiber cells. The epithelial cells lining the anterior hemisphere have the capacity to continuously proliferate and differentiate into lens fiber cells that make up the large proportion of the lens mass. To understand the transcriptional changes that take place during the differentiation process, high-throughput RNA-Seq of newborn mouse lens epithelial cells and lens fiber cells was conducted to comprehensively compare the transcriptomes of these two cell types. METHODS: RNA from three biologic replicate samples of epithelial and fiber cells from newborn FVB/N mouse lenses was isolated and sequenced to yield more than 24 million reads per sample. Sequence reads that passed quality filtering were mapped to the reference genome using Genomic Short-read Nucleotide Alignment Program (GSNAP). Transcript abundance and differential gene expression were estimated using the Cufflinks and DESeq packages, respectively. Gene Ontology enrichment was analyzed using GOseq. RNA-Seq results were compared with previously published microarray data. The differential expression of several biologically important genes was confirmed using reverse transcription (RT)-quantitative PCR (qPCR). RESULTS: Here, we present the first application of RNA-Seq to understand the transcriptional changes underlying the differentiation of epithelial cells into fiber cells in the newborn mouse lens. In total, 6,022 protein-coding genes exhibited differential expression between lens epithelial cells and lens fiber cells. To our knowledge, this is the first study identifying the expression of 254 long intergenic non-coding RNAs (lincRNAs) in the lens, of which 86 lincRNAs displayed differential expression between the two cell types. We found that RNA-Seq identified more differentially expressed genes and correlated with RT-qPCR quantification better than previously published microarray data. Gene Ontology analysis showed that genes upregulated in the epithelial cells were enriched for extracellular matrix production, cell division, migration, protein kinase activity, growth factor binding, and calcium ion binding. Genes upregulated in the fiber cells were enriched for proteosome complexes, unfolded protein responses, phosphatase activity, and ubiquitin binding. Differentially expressed genes involved in several important signaling pathways, lens structural components, organelle loss, and denucleation were also highlighted to provide insights into lens development and lens fiber differentiation. CONCLUSIONS: RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of protein-coding and non-coding transcripts from lens epithelial cells and lens fiber cells. This information provides a valuable resource for studying lens development, nuclear degradation, and organelle loss during fiber differentiation, and associated diseases.


Assuntos
Células Epiteliais/metabolismo , Cápsula do Cristalino/metabolismo , Córtex do Cristalino/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Cápsula do Cristalino/citologia , Córtex do Cristalino/citologia , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
9.
Development ; 141(17): 3388-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25139855

RESUMO

Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIß (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation.


Assuntos
Proteína Quinase CDC2/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Cristalino/citologia , Cristalino/enzimologia , Mitose , Animais , Proteína Quinase CDC2/deficiência , Proteínas de Ciclo Celular , DNA/biossíntese , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Endodesoxirribonucleases/metabolismo , Retículo Endoplasmático/metabolismo , Endorreduplicação , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Feminino , Integrases/metabolismo , Laminas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação
10.
Dev Dyn ; 243(10): 1298-309, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24753151

RESUMO

BACKGROUND: Transcription factors are critical in regulating lens development. The AP-2 family of transcription factors functions in differentiation, cell growth and apoptosis, and in lens and eye development. AP-2α, in particular, is important in early lens development, and when conditionally deleted at the placode stage defective separation of the lens vesicle from the surface ectoderm results. AP-2α's role during later stages of lens development is unknown. To address this, the MLR10-Cre transgene was used to delete AP-2α from the lens epithelium beginning at embryonic day (E) 10.5. RESULTS: The loss of AP-2α after lens vesicle separation resulted in morphological defects beginning at E18.5. By P4, a small highly vacuolated lens with a multilayered epithelium was evident in the MLR10-AP-2α mutants. Epithelial cells appeared elongated and expressed fiber cell specific ßB1 and γ-crystallins. Epithelial cell polarity and lens cell adhesion was disrupted and accompanied by the misexpression of ZO-1, N-Cadherin, and ß-catenin. Cell death was observed in the mutant lens epithelium between postnatal day (P) 14 and P30, and correlated with altered arrangements of cells within the epithelium. CONCLUSIONS: Our findings demonstrate that AP-2α continues to be required after lens vesicle separation to maintain a normal lens epithelial cell phenotype and overall lens integrity and to ensure correct fiber cell differentiation.


Assuntos
Cristalino/fisiologia , Fator de Transcrição AP-2/fisiologia , Animais , Catarata/genética , Adesão Celular/genética , Diferenciação Celular/genética , Polaridade Celular/genética , Embrião de Mamíferos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Epitélio/metabolismo , Epitélio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/embriologia , Camundongos , Camundongos Transgênicos , Fenótipo
11.
Exp Eye Res ; 121: 130-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24472646

RESUMO

While the role of growth factors in lens development has been investigated extensively, the role of extracellular matrix signalling is less well understood. The developing lens expresses predominantly laminin-binding integrins (such as α3ß1, α6ß1), which are cooperatively required in the lens epithelium during development. We investigated the role of ILK, a downstream mediator of integrin signalling in mice conditionally null for Ilk. Mutant lenses showed epithelial thinning at E17.5 with reduced proliferation and epithelial cell number and aberrant fibre differentiation. There was complete loss of the central epithelium from postnatal day (P) 2 due to cell death followed by fibre cell degeneration and death by P10 as well as rupture of the lens capsule between P10 and P21. At E17.5 there was significant inhibition (∼50%) of epithelial cell cycle progression, as shown by BrdU incorporation, cyclin D1/D2 and phospho-histone H3 immunostaining. The epithelial marker, E-cadherin, was decreased progressively from E17.5 to P2, in the central epithelium, but there was no significant change in Pax6 expression. Analyses of ERK and Akt phosphorylation indicated marked depression of MAPK and PI3K-Akt signalling, which correlated with decreased phosphorylation of FRS2α and Shp2, indicating altered activation of FGF receptors. At later postnatal stages there was reduced or delayed expression of fibre cell markers (ß-crystallin and p57(kip2)). Loss of Ilk also affected deposition of extracellular matrix, with marked retention of collagen IV within differentiating fibre cells. By quantitative RT-PCR array there was significantly decreased expression of 19 genes associated with focal adhesions, actin filament stability and MAPK and PI3K/Akt signalling. Overall, these data indicate that ILK is required for complete activation of signalling cascades downstream of the FGF receptor in lens epithelium and fibre cells during development and thus is involved in epithelial proliferation, survival and subsequent fibre differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Epiteliais/citologia , Cristalino/embriologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Western Blotting , Caderinas/metabolismo , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
J Clin Invest ; 123(12): 5401-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270425

RESUMO

Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients.


Assuntos
Catarata/genética , Proteínas do Olho/fisiologia , Síndrome do Hamartoma Múltiplo/complicações , Transporte de Íons/fisiologia , Cristalino/patologia , PTEN Fosfo-Hidrolase/deficiência , Proteínas Proto-Oncogênicas c-akt/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Sódio/metabolismo , Envelhecimento , Animais , Catarata/etiologia , Catarata/metabolismo , Catarata/patologia , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática , Proteínas do Olho/antagonistas & inibidores , Pressão Hidrostática , Cristalino/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ruptura Espontânea
13.
PLoS One ; 7(11): e50832, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226398

RESUMO

Age-related nuclear cataracts are associated with progressive post-synthetic modifications of crystallins from various physical chemical and metabolic insults, of which oxidative stress is a major factor. The latter is normally suppressed by high concentrations of glutathione (GSH), which however are very low in the nucleus of the old lens. Here we generated a mouse model of oxidant stress by knocking out glutathione synthesis in the mouse in the hope of recapitulating some of the changes observed in human age-related nuclear cataract (ARNC). A floxed Gclc mouse was generated and crossed with a transgenic mouse expressing Cre in the lens to generate the LEGSKO mouse in which de novo GSH synthesis was completely abolished in the lens. Lens GSH levels were reduced up to 60% in homozygous LEGSKO mice, and a decreasing GSH gradient was noticed from cortical to nuclear region at 4 months of age. Oxidation of crystallin methionine and sulfhydryls into sulfoxides was dramatically increased, but methylglyoxal hydroimidazolones levels that are GSH/glyoxalase dependent were surprisingly normal. Homozygous LEGSKO mice developed nuclear opacities starting at 4 months that progressed into severe nuclear cataract by 9 months. We conclude that the LEGSKO mouse lens mimics several features of human ARNC and is thus expected to be a useful model for the development of anti-cataract agents.


Assuntos
Envelhecimento/patologia , Catarata/patologia , Glutamato-Cisteína Ligase/genética , Glutationa/biossíntese , Núcleo do Cristalino/enzimologia , Núcleo do Cristalino/patologia , Supressão Genética , Animais , Catarata/enzimologia , DNA/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Genótipo , Glutamato-Cisteína Ligase/deficiência , Glutamato-Cisteína Ligase/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
14.
Mol Med ; 18: 861-73, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517312

RESUMO

Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor ß (TGFß), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFß signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFß-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFß-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFß signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFß-induced EMT.


Assuntos
Catarata/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fator de Crescimento Transformador beta/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Catarata/metabolismo , Catarata/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Cristalino/metabolismo , Cristalino/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/efeitos dos fármacos
15.
Dev Biol ; 360(1): 30-43, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21945075

RESUMO

Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/ß-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.


Assuntos
Cristalino/embriologia , Neuropeptídeos/deficiência , Proteínas rac de Ligação ao GTP/deficiência , Actinas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cápsula do Cristalino/anormalidades , Cápsula do Cristalino/citologia , Cápsula do Cristalino/embriologia , Cápsula do Cristalino/fisiologia , Cristalino/anormalidades , Cristalino/citologia , Cristalino/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neuropeptídeos/genética , Neuropeptídeos/fisiologia , Fenótipo , Gravidez , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP
16.
Dev Biol ; 351(1): 35-45, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21185283

RESUMO

E2F transcription factors regulate the progression of the cell cycle by repression or transactivation of genes that encode cyclins, cyclin dependent kinases, checkpoint regulators, and replication proteins. Although some E2F functions are independent of the Retinoblastoma tumor suppressor (Rb) and related family members, p107 and p130, much of E2F-mediated repression of S phase entry is dependent upon Rb. We previously showed in cultured mouse embryonic fibroblasts that concomitant loss of three E2F activators with overlapping functions (E2F1, E2F2, and E2F3) triggered the p53-p21(Cip1) response and caused cell cycle arrest. Here we report on a dramatic difference in the requirement for E2F during development and in cultured cells by showing that cell cycle entry occurs normally in E2f1-3 triply-deficient epithelial stem cells and progenitors of the developing lens. Sixteen days after birth, however, massive apoptosis in differentiating epithelium leads to a collapse of the entire eye. Prior to this collapse, we find that expression of cell cycle-regulated genes in E2F-deficient lenses is aberrantly high. In a second set of experiments, we demonstrate that E2F3 ablation alone does not cause abnormalities in lens development but rescues phenotypic defects caused by loss of Rb, a binding partner of E2F known to recruit histone deacetylases, SWI/SNF and CtBP-polycomb complexes, methyltransferases, and other co-repressors to gene promoters. Together, these data implicate E2F1-3 in mediating transcriptional repression by Rb during cell cycle exit and point to a critical role for their repressive functions in cell survival.


Assuntos
Proliferação de Células , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F3/deficiência , Células Epiteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia
17.
Pediatr Res ; 68(6): 500-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20736884

RESUMO

Congenital obstructive nephropathy (CON) is the most common cause of chronic renal failure in children often leading to end-stage renal disease. The megabladder (mgb) mouse exhibits signs of urinary tract obstruction in utero resulting in the development of hydroureteronephrosis and progressive renal failure after birth. This study examined the development of progressive renal injury in homozygous mgb mice (mgb-/-). Renal ultrasound was used to stratify the disease state of mgb-/- mice, whereas surgical rescue was performed using vesicostomy. The progression of renal injury was characterized using a series of pathogenic markers including alpha smooth muscle isoactin (α-SMA), TGF-ß1, connective tissue growth factor (CTGF), E-cadherin, F4/80, Wilm's tumor (WT)-1, and paired box gene (Pax) 2. This analysis indicated that mgb-/- mice are born with pathologic changes in kidney development that progressively worsen in direct correlation with the severity of hydronephrosis. The initiation and pattern of fibrotic development observed in mgb-/- kidneys appeared distinctive from previous animal models of obstruction. These observations suggest that the mgb mouse represents a unique small animal model for the study of CON.


Assuntos
Hidronefrose/congênito , Hidronefrose/patologia , Falência Renal Crônica/congênito , Falência Renal Crônica/patologia , Rim/lesões , Nefrite Intersticial/congênito , Nefrite Intersticial/patologia , Animais , Criança , Cistostomia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Humanos , Hidronefrose/complicações , Hidronefrose/cirurgia , Rim/diagnóstico por imagem , Rim/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/cirurgia , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Nefrite Intersticial/complicações , Nefrite Intersticial/cirurgia , Ultrassonografia
18.
Differentiation ; 80(1): 53-67, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20542628

RESUMO

Growth factor signaling, mediated via receptor tyrosine kinases (RTKs), needs to be tightly regulated in many developmental systems to ensure a physiologically appropriate biological outcome. At one level this regulation may involve spatially and temporally ordered patterns of expression of specific RTK signaling antagonists, such as Sef (similar expression to fgfs). Growth factors, notably FGFs, play important roles in development of the vertebrate ocular lens. FGF induces lens cell proliferation and differentiation at progressively higher concentrations and there is compelling evidence that a gradient of FGF signaling in the eye determines lens polarity and growth patterns. We have recently identified the presence of Sef in the lens, with strongest expression in the epithelial cells. Given the important role for FGFs in lens developmental biology, we employed transgenic mouse strategies to determine if Sef could be involved in regulating lens cell behaviour. Over-expressing Sef specifically in the lens of transgenic mice led to impaired lens and eye development that resulted in microphthalmia. Sef inhibited primary lens fiber cell elongation and differentiation, as well as increased apoptosis, consistent with a block in FGFR-mediated signaling during lens morphogenesis. These results are consistent with growth factor antagonists, such as Sef, being important negative regulators of growth factor signaling. Moreover, the lens provides a useful paradigm as to how opposing gradients of a growth factor and its antagonist could work together to determine and stabilise tissue patterning during development and growth.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/citologia , Cristalino/citologia , Proteínas de Membrana/fisiologia , Animais , Apoptose , Western Blotting , Embrião de Mamíferos/metabolismo , Células Epiteliais/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microftalmia/metabolismo , Microftalmia/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Cadeia A de alfa-Cristalina/genética
19.
Nature ; 462(7275): 930-4, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016602

RESUMO

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Assuntos
Diferenciação Celular , Fatores de Transcrição E2F/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Alelos , Animais , Apoptose , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/metabolismo
20.
Nature ; 461(7267): 1084-91, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847259

RESUMO

The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Matriz Extracelular/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteína Proto-Oncogênica c-ets-2/deficiência , Proteína Proto-Oncogênica c-ets-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA