Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 66, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797268

RESUMO

Approximately 20 TP53 retrogenes exist in the African and Asian elephant genomes (Loxodonta Africana, Elephas Maximus) in addition to a conserved TP53 gene that encodes a full-length protein. Elephant TP53-RETROGENE 9 (TP53-R9) encodes a p53 protein (p53-R9) that is truncated in the middle of the canonical DNA binding domain. This C-terminally truncated p53 retrogene protein lacks the nuclear localization signals and oligomerization domain of its full-length counterpart. When expressed in human osteosarcoma cells (U2OS), p53-R9 binds to Tid1, the chaperone protein responsible for mitochondrial translocation of human p53 in response to cellular stress. Tid1 expression is required for p53-R9-induced apoptosis. At the mitochondria, p53-R9 binds to the pro-apoptotic BCL-2 family member Bax, which leads to caspase activation, cytochrome c release, and cell death. Our data show, for the first time, that expression of this truncated elephant p53 retrogene protein induces apoptosis in human cancer cells. Understanding the molecular mechanism by which the additional elephant TP53 retrogenes function may provide evolutionary insight that can be utilized for the development of therapeutics to treat human cancers.

2.
PLoS One ; 16(2): e0244334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544724

RESUMO

Wild elephant populations are declining rapidly due to rampant killing for ivory and body parts, range fragmentation, and human-elephant conflict. Wild and captive elephants are further impacted by viruses, including highly pathogenic elephant endotheliotropic herpesviruses. Moreover, while the rich genetic diversity of the ancient elephant lineage is disappearing, elephants, with their low incidence of cancer, have emerged as a surprising resource in human cancer research for understanding the intrinsic cellular response to DNA damage. However, studies on cellular resistance to transformation and herpesvirus reproduction have been severely limited, in part due to the lack of established elephant cell lines to enable in vitro experiments. This report describes creation of a recombinant plasmid, pAelPyV-1-Tag, derived from a wild isolate of African Elephant Polyomavirus (AelPyV-1), that can be used to create immortalized lines of elephant cells. This isolate was extracted from a trunk nodule biopsy isolated from a wild African elephant, Loxodonta africana, in Botswana. The AelPyV-1 genome contains open-reading frames encoding the canonical large (LTag) and small (STag) tumor antigens. We cloned the entire early region spanning the LTag and overlapping STag genes from this isolate into a high-copy vector to construct a recombinant plasmid, pAelPyV-1-Tag, which effectively transformed primary elephant endothelial cells. We expect that the potential of this reagent to transform elephant primary cells will, at a minimum, facilitate study of elephant-specific herpesviruses.


Assuntos
Antígenos Virais de Tumores/genética , Genoma Viral , Infecções por Polyomavirus/veterinária , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , Animais , Animais Selvagens , Elefantes , Células Endoteliais/virologia , Infecções por Polyomavirus/diagnóstico , Infecções Tumorais por Vírus/diagnóstico
3.
JAMA ; 314(17): 1850-60, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26447779

RESUMO

IMPORTANCE: Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE: To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS: A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES: Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES: Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS: Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P < .001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P < .001). CONCLUSIONS AND RELEVANCE: Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression.


Assuntos
Evolução Biológica , Dano ao DNA , Resistência à Doença/genética , Elefantes/genética , Neoplasias/genética , Animais , Apoptose , Estudos de Casos e Controles , Reparo do DNA , Doxorrubicina , Genes p53 , Humanos , Síndrome de Li-Fraumeni/genética , Linfócitos , Mamíferos/genética , Neoplasias/mortalidade , Radiação Ionizante
4.
Invest Ophthalmol Vis Sci ; 55(6): 3543-54, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24812550

RESUMO

PURPOSE: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway. METHODS: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis. RESULTS: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway. CONCLUSIONS: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.


Assuntos
Etnicidade , Predisposição Genética para Doença , Degeneração Macular/genética , Polimorfismo Genético , RNA/genética , Neovascularização Retiniana/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Grécia/etnologia , Humanos , Imunoprecipitação , Degeneração Macular/etnologia , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prevalência , República da Coreia/etnologia , Neovascularização Retiniana/etnologia , Neovascularização Retiniana/metabolismo , Fatores de Risco , Reino Unido/etnologia , Estados Unidos/epidemiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
J Med Chem ; 55(17): 7480-501, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22913511

RESUMO

Modulation of Hsp90 (heat shock protein 90) function has been recognized as an attractive approach for cancer treatment, since many cancer cells depend on Hsp90 to maintain cellular homeostasis. This has spurred the search for small-molecule Hsp90 inhibitors. Here we describe our lead optimization studies centered on the purine-based Hsp90 inhibitor 28a containing a piperidine moiety at the purine N9 position. In this study, key SAR was established for the piperidine N-substituent and for the congeners of the 1,3-benzodioxole at C8. These efforts led to the identification of orally bioavailable 28g that exhibits good in vitro profiles and a characteristic molecular biomarker signature of Hsp90 inhibition both in vitro and in vivo. Favorable pharmacokinetic properties along with significant antitumor effects in multiple human cancer xenograft models led to the selection of 28g (MPC-3100) as a clinical candidate.


Assuntos
Adenina/análogos & derivados , Benzodioxóis/química , Benzodioxóis/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Adenina/química , Adenina/farmacocinética , Adenina/farmacologia , Animais , Benzodioxóis/farmacocinética , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade
6.
Mol Cancer Ther ; 10(12): 2267-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21980130

RESUMO

Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces aneuploidy and cell death. We report the identification of MPI-0479605, a potent and selective ATP competitive inhibitor of Mps1. Cells treated with MPI-0479605 undergo aberrant mitosis, resulting in aneuploidy and formation of micronuclei. In cells with wild-type p53, this promotes the induction of a postmitotic checkpoint characterized by the ATM- and RAD3-related-dependent activation of the p53-p21 pathway. In both wild-type and p53 mutant cells lines, there is a growth arrest and inhibition of DNA synthesis. Subsequently, cells undergo mitotic catastrophe and/or an apoptotic response. In xenograft models, MPI-0479605 inhibits tumor growth, suggesting that drugs targeting Mps1 may have utility as novel cancer therapeutics.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenina/isolamento & purificação , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Mitose/efeitos dos fármacos , Mitose/fisiologia , Modelos Biológicos , Peso Molecular , Morfolinas/isolamento & purificação , Neoplasias/patologia , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioorg Med Chem Lett ; 20(5): 1677-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20137940

RESUMO

Valosin-containing protein (VCP; also known as p97) is a member of the AAA ATPase family with a central role in the ubiquitin-degradation of misfolded proteins. VCP also exhibits antiapoptotic function and metastasis via activation of nuclear factor kappa-B signaling pathway. We have discovered that 2-anilino-4-aryl-1,3-thiazoles are potent drug-like inhibitors of this enzyme. The identified compounds show low nanomolar VCP potency, demonstrate SAR trends, and show activity in a mechanism based cellular assay. This series of compounds represents the first steps towards a novel, small molecule VCP inhibitor as a cancer therapeutic.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Compostos de Anilina/química , Antineoplásicos/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Tiazóis/química , Adenosina Trifosfatases/metabolismo , Compostos de Anilina/síntese química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA