Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6062, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770432

RESUMO

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Assuntos
Interleucina-1 , Trombocitopenia , Humanos , Interleucina-1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Megacariócitos , Trombocitopenia/metabolismo
2.
Biomed Phys Eng Express ; 8(6)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36252558

RESUMO

With the evolution of modern warfare and the increased use of improvised explosive devices (IEDs), there has been an increase in blast-induced traumatic brain injuries (bTBI) among military personnel and civilians. The increased prevalence of bTBI necessitates bTBI models that result in a properly scaled injury for the model organism being used. The primary laboratory model for bTBI is the shock tube, wherein a compressed gas ruptures a thin membrane, generating a shockwave. To generate a shock wave that is properly scaled from human to rodent subjects many pre-clinical models strive for a short duration and high peak overpressure while fitting a Friedlander waveform, the ideal representation of a blast wave. A large variety of factors have been experimentally characterized in attempts to create an ideal waveform, however we found current research on the gas composition being used to drive shock wave formation to be lacking. To better understand the effect the driver gas has on the waveform being produced, we utilized a previously established murine shock tube bTBI model in conjunction with several distinct driver gasses. In agreement with previous findings, helium produced a shock wave most closely fitting the Friedlander waveform in contrast to the plateau-like waveforms produced by some other gases. The peak static pressure at the exit of the shock tube and total pressure 5 cm from the exit have a strong negative correlation with the density of the gas being used: helium the least dense gas used produces the highest peak overpressure. Density of the driver gas also exerts a strong positive effect on the duration of the shock wave, with helium producing the shortest duration wave. Due to its ability to produce a Friedlander waveform and produce a waveform following proper injury scaling guidelines, helium is an ideal gas for use in shock tube models for bTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas , Camundongos , Humanos , Animais , Hélio , Modelos Animais de Doenças , Explosões
3.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894725

RESUMO

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
4.
Mol Metab ; 14: 95-107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29914854

RESUMO

OBJECTIVE: Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet ß-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1ß, suggesting that signaling through this pathway regulates health and function of islet ß-cells. METHODS: Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1-/-) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, ß-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. RESULTS: Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1-/- with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1-/- mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1-/- relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1-/- mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1-/- mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the ß-cell transcription factor MafA. Nkx6.1 abundance was unaltered. CONCLUSIONS: There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Tipo I de Interleucina-1/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase , Resistência à Insulina , Células Secretoras de Insulina/citologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
5.
Transl Res ; 166(6): 509-528.e1, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26414010

RESUMO

A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Animais , Apoptose , Traumatismos por Explosões/enzimologia , Traumatismos por Explosões/metabolismo , Lesões Encefálicas/enzimologia , Lesões Encefálicas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ácido Tióctico/farmacologia
6.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L915-24, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705722

RESUMO

Exoenzyme Y (ExoY) is a Pseudomonas aeruginosa toxin that is introduced into host cells through the type 3 secretion system (T3SS). Once inside the host cell cytoplasm, ExoY generates cyclic nucleotides that cause tau phosphorylation and microtubule breakdown. Microtubule breakdown causes interendothelial cell gap formation and tissue edema. Although ExoY transiently induces interendothelial cell gap formation, it remains unclear whether ExoY prevents repair of the endothelial cell barrier. Here, we test the hypothesis that ExoY intoxication impairs recovery of the endothelial cell barrier following gap formation, decreasing migration, proliferation, and lung repair. Pulmonary microvascular endothelial cells (PMVECs) were infected with P. aeruginosa strains for 6 h, including one possessing an active ExoY (PA103 exoUexoT::Tc pUCPexoY; ExoY(+)), one with an inactive ExoY (PA103ΔexoUexoT::Tc pUCPexoY(K81M); ExoY(K81M)), and one that lacks PcrV required for a functional T3SS (ΔPcrV). ExoY(+) induced interendothelial cell gaps, whereas ExoY(K81M) and ΔPcrV did not promote gap formation. Following gap formation, bacteria were removed and endothelial cell repair was examined. PMVECs were unable to repair gaps even 3-5 days after infection. Serum-stimulated growth was greatly diminished following ExoY intoxication. Intratracheal inoculation of ExoY(+) and ExoY(K81M) caused severe pneumonia and acute lung injury. However, whereas the pulmonary endothelial cell barrier was functionally improved 1 wk following ExoY(K81M) infection, pulmonary endothelium was unable to restrict the hyperpermeability response to elevated hydrostatic pressure following ExoY(+) infection. In conclusion, ExoY is an edema factor that chronically impairs endothelial cell barrier integrity following lung injury.


Assuntos
Proteínas de Bactérias/fisiologia , Proliferação de Células , Células Endoteliais/microbiologia , Glucosiltransferases/fisiologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/enzimologia , Animais , AMP Cíclico/metabolismo , Edema/imunologia , Edema/microbiologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , Interações Hospedeiro-Patógeno , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/microbiologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/microbiologia , Masculino , Microvasos/patologia , Microvasos/fisiopatologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Ratos
7.
Eur J Pharmacol ; 724: 193-203, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24380829

RESUMO

Exposure to high or repeated doses of methamphetamine can cause hyperthermia and neurotoxicity, which are thought to increase the risk of developing a variety of neurological conditions. Sigma receptor antagonism can prevent methamphetamine-induced hyperthermia and neurotoxicity, but the underlying cellular targets through which the neuroprotection is conveyed remain unknown. Differentiated NG108-15 cells were thus used as a model system to begin elucidating the neuroprotective mechanisms targeted by sigma receptor antagonists to mitigate the effects of methamphetamine. In differentiated NG108-15 cells, methamphetamine caused the generation of reactive oxygen/nitrogen species, an increase in PERK-mediated endoplasmic reticulum stress and the activation of caspase-3, -8 and -9, ultimately resulting in apoptosis at micromolar concentrations, and necrotic cell death at higher concentrations. The sigma receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), attenuated methamphetamine-induced increases in reactive oxygen/nitrogen species, activation of caspase-3, -8 and -9 and accompanying cellular toxicity. In contrast, 1,3-di(2-tolyl)-guanidine (DTG), a sigma receptor agonist, shifted the dose response curve of methamphetamine-induced cell death towards the left. To probe the effect of temperature on neurotoxicity, NG108-15 cells maintained at an elevated temperature (40 °C) exhibited a significant and synergistic increase in cell death in response to methamphetamine, compared to cells maintained at a normal cell culture temperature (37 °C). SN79 attenuated the enhanced cell death observed in the methamphetamine-treated cells at 40 °C. Together, the data demonstrate that SN79 reduces methamphetamine-induced reactive oxygen/nitrogen species generation and caspase activation, thereby conveying neuroprotective effects against methamphetamine under regular and elevated temperature conditions.


Assuntos
Benzoxazóis/farmacologia , Metanfetamina/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Piperazinas/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Febre/metabolismo , Ligantes , Camundongos , Necrose/tratamento farmacológico , Necrose/metabolismo , eIF-2 Quinase/metabolismo
8.
Exp Neurol ; 247: 134-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631864

RESUMO

Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated.


Assuntos
Benzoxazóis/farmacologia , Citocinas/metabolismo , Metanfetamina/farmacologia , Microglia/efeitos dos fármacos , Piperazinas/farmacologia , Receptores sigma/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Análise de Variância , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Temperatura Corporal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/genética , Masculino , Camundongos , RNA Mensageiro , Fatores de Tempo
9.
Pharmacol Biochem Behav ; 101(1): 174-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22234290

RESUMO

Repeated exposure to cocaine induces neuroadaptations which contribute to the rewarding properties of cocaine. Using cocaine-induced conditioned place preference (CPP) as an animal model of reward, earlier studies have shown that sigma (σ) receptor ligands can attenuate the acquisition, expression and reactivation of CPP. However, the underlying molecular mechanisms that are associated with these changes are not yet understood. In the present study, CM156, a novel antagonist with high selectivity and affinity for σ receptors was used to attenuate the expression of cocaine-induced CPP in mice. Immediately following the behavioral evaluations, mouse brain tissues were collected and alterations in gene expression in half brain samples were profiled by cDNA microarray analysis. Microarray data was analyzed by three distinct normalization methods and four genes were consistently found to be upregulated by cocaine when compared to saline controls. Each of these gene changes were found by more than one normalization method to be reversed by at least one dose of CM156. Quantitative real time PCR confirmed that a single administration of CM156 was able to reverse the cocaine-induced increases in three of these four genes: metastasis associated lung adenocarcinoma transcript 1 (malat1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (ywhaz), and transthyretin (ttr). These genes are involved in processes related to neuroplasticity and RNA editing. The data presented herein provides evidence that pharmacological intervention with a putative σ receptor antagonist reverses alterations in gene expression that are associated with cocaine-induced reward.


Assuntos
Proteínas 14-3-3/genética , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Cocaína/antagonistas & inibidores , Condicionamento Operante/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Receptores sigma/antagonistas & inibidores , Compostos de Enxofre/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Cocaína/farmacologia , DNA Complementar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Atividade Motora/efeitos dos fármacos , Pré-Albumina/genética , RNA/biossíntese , RNA/isolamento & purificação , RNA Longo não Codificante , RNA não Traduzido/genética , Reação em Cadeia da Polimerase em Tempo Real , Esquema de Reforço , Recompensa , Convulsões/induzido quimicamente
10.
Eur Neuropsychopharmacol ; 22(4): 308-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21911285

RESUMO

Ketamine is an NMDA antagonist and dissociative anesthetic that has been shown to display rapid acting and prolonged antidepressant activity in small-scale human clinical trials. Ketamine also binds to σ receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine the involvement of σ receptors in the antidepressant-like actions of ketamine. Competition binding assays were performed to assess the affinity of ketamine for σ(1) and σ(2) receptors. The antidepressant-like effects of ketamine were assessed in vitro using a neurite outgrowth model and PC12 cells, and in vivo using the forced swim test. The σ receptor antagonists, NE-100 and BD1047, were evaluated in conjunction with ketamine in these assays to determine the involvement of σ receptors in the antidepressant-like effects of ketamine. Ketamine bound to both σ(1) and σ(2) receptors with µM affinities. Additionally, ketamine potentiated NGF-induced neurite outgrowth in PC12 cells and this effect was attenuated in the presence of NE-100. Ketamine also displayed antidepressant-like effects in the forced swim test; however, these effects were not attenuated by pretreatment with NE-100 or BD1047. Taken together, these data suggest that σ receptor-mediated neuronal remodeling may contribute to the antidepressant effects of ketamine.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Receptores sigma/metabolismo , Animais , Anisóis/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Etilenodiaminas/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Fator de Crescimento Neural/agonistas , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , Propilaminas/farmacologia , Ensaio Radioligante/métodos , Ratos , Receptores sigma/antagonistas & inibidores
11.
Mol Pharmacol ; 81(3): 299-308, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22101517

RESUMO

Methamphetamine is a highly addictive psychostimulant drug of abuse that causes neurotoxicity with high or repeated dosing. Earlier studies demonstrated the ability of the selective σ receptor ligand N-phenethylpiperidine oxalate (AC927) to attenuate the neurotoxic effects of methamphetamine in vivo. However, the precise mechanisms through which AC927 conveys its protective effects remain to be determined. With the use of differentiated NG108-15 cells as a model system, the effects of methamphetamine on neurotoxic endpoints and mediators such as apoptosis, necrosis, generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and dopamine release were examined in the absence and presence of AC927. Methamphetamine at physiologically relevant micromolar concentrations caused apoptosis in NG108-15 cells. At higher concentrations of methamphetamine, necrotic cell death was observed. At earlier time points, methamphetamine caused ROS/RNS generation, which was detected with the fluorigenic substrate 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescin diacetate, acetyl ester, in a concentration- and time-dependent manner. N-Acetylcysteine, catalase, and l-N(G)-monomethyl arginine citrate inhibited the ROS/RNS fluorescence signal induced by methamphetamine, which suggests the formation of hydrogen peroxide and RNS. Exposure to methamphetamine also stimulated the release of dopamine from NG108-15 cells into the culture medium. AC927 attenuated methamphetamine-induced apoptosis, necrosis, ROS/RNS generation, and dopamine release in NG108-15 cells. Together, the data suggest that modulation of σ receptors can mitigate methamphetamine-induced cytotoxicity, ROS/RNS generation, and dopamine release in cultured cells.


Assuntos
Dopamina/metabolismo , Metanfetamina/antagonistas & inibidores , Oxalatos/farmacologia , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/agonistas , Apoptose , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Metanfetamina/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores sigma/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA