Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408963

RESUMO

This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.


Assuntos
Lipopolissacarídeos , Monócitos , Citocinas/metabolismo , Dipeptídeos/farmacologia , Células Endoteliais/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
2.
Medicina (Kaunas) ; 55(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866568

RESUMO

Background: Epidemiological studies suggest a possible relationship between metabolic alterations, cardiovascular disease and aggressive prostate cancer, however, no clear consensus has been reached. Objective: The aim of the study was to analyze the recent literature and summarize our experience on the association between metabolic disorders, aggressive hormone-naïve prostate cancer and cardiovascular disease. Method: We identified relevant papers by searching in electronic databases such as Scopus, Life Science Journals, and Index Medicus/Medline. Moreover, we showed our experience on the reciprocal relationship between metabolic alterations and aggressive prostate cancer, without the influence of hormone therapy, as well the role of coronary and carotid vasculopathy in advanced prostate carcinoma. Results: Prostate cancer cells have an altered metabolic homeostatic control linked to an increased aggressivity and cancer mortality. The absence of discrimination of risk factors as obesity, systemic arterial hypertension, diabetes mellitus, dyslipidemia and inaccurate selection of vascular diseases as coronary and carotid damage at initial diagnosis of prostate cancer could explain the opposite results in the literature. Systemic inflammation and oxidative stress associated with metabolic alterations and cardiovascular disease can also contribute to prostate cancer progression and increased tumor aggressivity. Conclusions: Metabolic alterations and cardiovascular disease influence aggressive and metastatic prostate cancer. Therefore, a careful evaluation of obesity, diabetes mellitus, dyslipidemia, systemic arterial hypertension, together with a careful evaluation of cardiovascular status, in particular coronary and carotid vascular disease, should be carried out after an initial diagnosis of prostatic carcinoma.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/metabolismo , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/metabolismo , Animais , Comorbidade , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/epidemiologia , Dislipidemias/metabolismo , Humanos , Hipertensão/epidemiologia , Hipertensão/metabolismo , MEDLINE , Masculino , Camundongos , Obesidade/epidemiologia , Obesidade/metabolismo , Fatores de Risco
3.
Curr Top Med Chem ; 18(24): 2108-2115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30526463

RESUMO

Recently gut bacterial populations seem to be involved in many functions and in the pathogenesis of several medical conditions. Traditionally the intestinal microbiome has been recognized to play an important role in metabolizing food compounds in simpler chemical structures for the absorption of different nutrients, and in maintenance control of gastrointestinal pathogens species. Bacterial populations are implicated in a complicated network of interactions within the immune system, epithelial cells local endocrine system, that affects the peripheral and the central nervous system, via blood circulation. Microbiome influencing the mind via immune, endocrine and metabolic signalling, is able to exert some clinical effects in different mental diseases. It releases endocrine substances through several pathways involved in the modulation of neuroinflammation and production of several neurotrasmitter precursors. It has recently been named psychobiome. It is known that phenolic compounds are able to influence microbiome proliferation and to exert several roles, especially regarding neuroinflammation in depressive and anxious behaviour. The clinical effects are reported in the literature. The aim of this study is to highlight the interaction between polyphenols and microbiota- gut-brain axis.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/microbiologia , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Animais , Transtornos de Ansiedade/metabolismo , Transtorno Depressivo/metabolismo , Humanos
4.
PLoS One ; 13(11): e0206894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30418986

RESUMO

OBJECTIVE: Obesity is the result of white adipose tissue accumulation where excess of food energy is stored to form triglycerides. De novo lipogenesis (DNL) is the continuous process of new fat production and is driven by the transcription factor ChREBP. During adipogenesis, white adipocytes change their morphology and the entire cell volume is occupied by one large lipid droplet. Recent studies have implicated an essential role of autophagy in adipogenic differentiation, cytoplasmic remodelling and mitochondria reorganization. The phenolic monoterpenoid carvacrol (2-methyl-5-[1-methylethyl]phenol), produced by numerous aromatic plants, has been shown to reduce lipid accumulation in murine 3T3-L1 cells during adipogenic differentiation by modulating genes associated with adipogenesis and inflammation. Therefore, the aim of this study was to evaluate whether carvacrol could affect autophagy and ChREBP expression during adipogenic differentiation. METHODS: The study was carried on by using the murine 3T3-L1 and the human WJ-MSCs (Wharton's jelly-derived mesenchymal stem cells) cell lines. Cells undergoing adipogenic differentiation were untreated or treated with carvacrol. Adipogenic differentiation was assessed by analyzing cellular lipid accumulation with Oil-Red O staining and by ultrastructural examination with TEM. Autophagy was evaluated by western immunoblotting of autophagy markers LC3B and p62/SQSTM and by ultrastructural examination of autophagic bodies. Autophagic flux was evaluated by using autophagy inhibitor cloroquine (CQ). ChREBP expression levels was assessed by both western blotting and immunoelectron microscopy and ChREBP activity by analysis of adipogenic target genes expression. RESULTS: We found that carvacrol reduced adipogenic differentiation of about 40% and 30% in, respectively, 3T3-L1 and in WJ-MSCs cells. The effect of carvacrol on adipogenic differentiation correlated with both reduction of autophagy and reduction of ChREBP expression. CONCLUSION: The results support the notion that carvacrol, through its effect on autophagy (essential for adipocyte maturation) and on ChREBP activity, could be used as a valuable adjuvant to reduce adipogenic differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Monoterpenos/farmacologia , Proteínas Nucleares/metabolismo , Obesidade/tratamento farmacológico , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/fisiologia , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Cimenos , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Monoterpenos/uso terapêutico , Obesidade/etiologia , Cultura Primária de Células , Geleia de Wharton/citologia
5.
FASEB J ; 24(10): 3970-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20530751

RESUMO

Inflammatory lung disease is a primary cause of morbidity and mortality in cystic fibrosis (CF). Mechanisms of unresolved acute inflammation in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in nonrespiratory cells is emerging. Here we examined CFTR expression and function in human platelets (PLTs) and found that they express a biologically active CFTR. CFTR blockade gave an ∼50% reduction in lipoxin A(4) (LXA(4)) formation during PLT/polymorphonuclear leukocytes (PMN) coincubations by inhibiting the lipoxin synthase activity of PLT 12-lipoxygenase. PLTs from CF patients generated ∼40% less LXA(4) compared to healthy subject PLTs. CFTR inhibition increased PLT-dependent PMN viability (33.0±5.7 vs. 61.2±8.2%; P=0.033), suppressed nitric oxide generation (0.23±0.04 vs. 0.11±0.002 pmol/10(8) PLTs; P=0.004), while reducing AKT (1.02±0.12 vs. 0.71±0.007 U; P=0.04), and increasing p38 MAPK phosphorylation (0.650±0.09 vs. 1.04±0.24 U; P=0.03). Taken together, these findings indicate that PLTs from CF patients are affected by the molecular defect of CFTR. Moreover, this CF PLT abnormality may explain the failure of resolution in CF.


Assuntos
Plaquetas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/sangue , Mediadores da Inflamação/fisiologia , Apoptose , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Fosforilação , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Bioelectromagnetics ; 29(4): 302-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18175330

RESUMO

To investigate the ability of prokaryotic microorganisms to activate strategies in adapting themselves to the environmental stress induced by exposure to extremely low frequency electromagnetic fields (ELF-EMF), cultures of Escherichia coli ATCC 700926 exposed at 50 Hz EMF (0.1, 0.5, 1.0 mT), and the respective sham-exposed controls were studied for: the total and culturable counts, the viability status, the antimicrobial susceptibility pattern, the morphological analysis, the genotypical and transcriptional profile. Exposed samples and controls displayed similar total and culturable counts, whereas an increased cell viability was observed in exposed samples re-incubated for 24 h outside of the solenoid compared to the corresponding controls. An exposure to 50 Hz EMF of 20-120 min produced a significant change of E. coli morphotype with a presence of coccoid cells also aggregated in clusters after re-incubation of 24 h outside of the solenoid. Atypical lengthened bacterial forms were also observed suggesting a probable alteration during cell division. No changes among DNA fingerprintings and some differences in RNA-AFLP analysis were observed for each 50 Hz EMF intensities evaluated. Our results indicate that an exposure to 50 Hz EMF acts as a stressing factor on bacteria which can represent a suitable model to investigate acute and chronic effects related to ELF-EMF exposure.


Assuntos
Tamanho Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Eletricidade , Campos Eletromagnéticos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Relação Dose-Resposta à Radiação , Escherichia coli/citologia , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA