Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299011

RESUMO

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapêutico , Fraturas do Fêmur/enzimologia , Humanos , Incidência , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Filogenia , Alinhamento de Sequência
2.
J Inherit Metab Dis ; 43(1): 133-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942483

RESUMO

There are many metabolic disorders that present with bone phenotypes. In some cases, the pathological bone symptoms are the main features of the disease whereas in others they are a secondary characteristic. In general, the generation of the bone problems in these disorders is not well understood and the therapeutic options for them are scarce. Bone development occurs in the early stages of embryonic development where the bone formation, or osteogenesis, takes place. This osteogenesis can be produced through the direct transformation of the pre-existing mesenchymal cells into bone tissue (intramembranous ossification) or by the replacement of the cartilage by bone (endochondral ossification). In contrast, bone remodeling takes place during the bone's growth, after the bone development, and continues throughout the whole life. The remodeling involves the removal of mineralized bone by osteoclasts followed by the formation of bone matrix by the osteoblasts, which subsequently becomes mineralized. In some metabolic diseases, bone pathological features are associated with bone development problems but in others they are associated with bone remodeling. Here, we describe three examples of impaired bone development or remodeling in metabolic diseases, including work by others and the results from our research. In particular, we will focus on hereditary multiple exostosis (or osteochondromatosis), Gaucher disease, and the susceptibility to atypical femoral fracture in patients treated with bisphosphonates for several years.


Assuntos
Desenvolvimento Ósseo/fisiologia , Remodelação Óssea/fisiologia , Cartilagem/crescimento & desenvolvimento , Doenças Metabólicas/metabolismo , Osteogênese/fisiologia , Animais , Cartilagem/citologia , Condrócitos/ultraestrutura , Difosfonatos/uso terapêutico , Exostose Múltipla Hereditária/metabolismo , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/metabolismo , Doença de Gaucher/metabolismo , Humanos , Osteoclastos/metabolismo
3.
Bone ; 123: 39-47, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878523

RESUMO

Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Osteoporose/genética , Densidade Óssea/genética , Linhagem Celular Tumoral , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Desequilíbrio de Ligação/genética , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
4.
J Bone Miner Res ; 33(12): 2091-2098, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184270

RESUMO

Atypical femoral fractures (AFFs) are a rare but potentially devastating event, often but not always linked to bisphosphonate (BP) therapy. The pathogenic mechanisms underlying AFFs remain obscure, and there are no tests available that might assist in identifying those at high risk of AFF. We previously used exome sequencing to explore the genetic background of three sisters with AFFs and three additional unrelated AFF cases, all previously treated with BPs. We detected 37 rare mutations (in 34 genes) shared by the three sisters. Notably, we found a p.Asp188Tyr mutation in the enzyme geranylgeranyl pyrophosphate synthase, a component of the mevalonate pathway, which is critical to osteoclast function and is inhibited by N-BPs. In addition, the CYP1A1 gene, responsible for the hydroxylation of 17ß-estradiol, estrone, and vitamin D, was also mutated in all three sisters and one unrelated patient. Here we present a detailed list of the variants found and report functional analyses of the GGPS1 p.Asp188Tyr mutation, which showed a severe reduction in enzyme activity together with oligomerization defects. Unlike BP treatment, this genetic mutation will affect all cells in the carriers. RNAi knockdown of GGPS1 in osteoblasts produced a strong mineralization reduction and a reduced expression of osteocalcin, osterix, and RANKL, whereas in osteoclasts, it led to a lower resorption activity. Taken together, the impact of the mutated GGPPS and the relevance of the downstream effects in bone cells make it a strong candidate for AFF susceptibility. We speculate that other genes such as CYP1A1 might be involved in AFF pathogenesis, which remains to be functionally proved. The identification of the genetic background for AFFs provides new insights for future development of novel risk assessment tools. © 2018 American Society for Bone and Mineral Research.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Fraturas do Fêmur/genética , Fraturas do Fêmur/patologia , Fêmur/patologia , Geraniltranstransferase/genética , Mutação/genética , Animais , Feminino , Humanos , Camundongos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma
5.
Sci Rep ; 8(1): 10951, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026596

RESUMO

Numerous GWAS and candidate gene studies have highlighted the role of the Wnt pathway in bone biology. Our objective has been to study in detail the allelic architecture of three Wnt pathway genes: WNT16, DKK1 and SOST, in the context of osteoporosis. We have resequenced the coding and some regulatory regions of these three genes in two groups with extreme bone mineral density (BMD) (n = ∼50, each) from the BARCOS cohort. No interesting novel variants were identified. Thirteen predicted functional variants have been genotyped in the full cohort (n = 1490), and for ten of them (with MAF > 0.01), the association with BMD has been studied. We have found six variants nominally associated with BMD, of which 2 WNT16 variants predicted to be eQTLs for FAM3C (rs55710688, in the Kozak sequence and rs142005327, within a putative enhancer) withstood multiple-testing correction. In addition, two rare variants in functional regions (rs190011371 in WNT16b 3'UTR and rs570754792 in the SOST TATA box) were found only present in three women each, all with BMD below the mean of the cohort. Our results reinforce the higher importance of regulatory versus coding variants in these Wnt pathway genes and open new ways for functional studies of the relevant variants.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Marcadores Genéticos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Proteínas Wnt/genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Densidade Óssea , Citocinas/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Pós-Menopausa/genética , Locos de Características Quantitativas , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA