Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(1): 170-187, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563291

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is one of the leading causes of death in developing countries. Non-tuberculous mycobacteria (NTM) infections are rising and prey upon patients with structural lung diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. All mycobacterial infections require lengthy treatment regimens with undesirable side effects. Therefore, new antimycobacterial compounds with novel mechanisms of action are urgently needed. Published indole-2-carboxamides (IC) with suggested inhibition of the essential transporter MmpL3 showed good potency against whole-cell M.tb, yet had poor aqueous solubility. This project focused on retaining the required MmpL3 inhibitory pharmacophore and increasing the molecular heteroatom percentage by reducing lipophilic atoms. We evaluated pyrrole, mandelic acid, imidazole, and acetamide functional groups coupled to lipophilic head groups, where lead acetamide-based compounds maintained high potency against mycobacterial pathogens, had improved in vitro ADME profiles over their indole-2-carboxamide analogs, were non-cytotoxic, and were determined to be MmpL3 inhibitors.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/química , Tuberculose/tratamento farmacológico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Indóis/química , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-34083157

RESUMO

OBJECTIVES: We propose a new topical radiographic contrast method for distinguishing noncavitated from cavitated radiolucencies. Laboratory tests and a pilot clinical trial were designed to test the feasibility and efficacy of the method. STUDY DESIGN: Twenty-two adults with 27 proximal radiolucencies had conventional bitewing (BW) examinations. After exclusion, 21 surfaces were evaluated. A concentrated solution of sodium iodide was placed in the interdental spaces via a microsyringe and BWs were again exposed. A class II cavity preparation was made in the adjacent tooth and polysiloxane impressions were made of the study surfaces. The impressions were scanned by visible light, creating a high resolution 3D replica. Cavitations, if present, were measured. RESULTS: Nine surfaces were noncavitated and 12 surfaces were cavitated. The microsyringe dispensed a variable volume of liquid, which affected the accuracy of the test. The sensitivity for cavitation was 50%, specificity was 88.9%, and accuracy was 66.7%. This compares to a reported 60% sensitivity, 62% specificity, and 62% accuracy for BW examinations. Intraexaminer reliability for classifying noncavitated or cavitated lesions using the kappa test was 0.649. CONCLUSIONS: This method needs improvement but was an advance over conventional BWs and could result in reduction of restorations in low- and high-risk patients.


Assuntos
Cárie Dentária , Dente , Adulto , Cárie Dentária/diagnóstico por imagem , Humanos , Exame Físico , Reprodutibilidade dos Testes
3.
Hear Res ; 390: 107951, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244147

RESUMO

The retinoblastoma family of pocket proteins (pRBs), composed of Rb1, p107, and p130 are negative regulators of cell-cycle progression. The deletion of any individual pRB in the auditory system triggers hair cells' (HCs) and supporting cells' (SCs) proliferation to different extents. Nevertheless, accessing their combined role in the inner ear through conditional or complete knockout methods is limited by the early mortality of the triple knockout. In quiescent cells, hyperphosphorylation and inactivation of the pRBs are maintained through the activity of the Cyclin-D1-cdk4/6 complex. Cyclin D1 (CycD1) is expressed in the embryonic and neonatal inner ear. In the mature organ of Corti (OC), CycD1 expression is significantly downregulated, paralleling the OC mitotic quiescence. Earlier studies showed that CycD1 overexpression leads to cell-cycle reactivation in cultures of inner ear explants. Here, we characterize a Cre-activated, Doxycycline (Dox)-controlled, conditional CycD1 overexpression model, which when bred to a tetracycline-controlled transcriptional activator and the Atoh1-cre mouse lines, allow for transient CycD1 overexpression and pRBs' downregulation in the inner ear in a reversible fashion. Analyses of postnatal mice's inner ears at various time points revealed the presence of supernumerary cells throughout the length of the cochlea and in the vestibular end-organs. Notably, most supernumerary cells were observed in the inner hair cells' (IHCs) region, expressed myosin VIIa (M7a), and showed no signs of apoptosis at any of the time points analyzed. Auditory and vestibular phenotypes were similar between the different genotypes and treatment groups. The fact that no significant differences were observed in auditory and vestibular function supports the notion that the supernumerary cells detected in the adult mice cochlea and macular end-organs may not impair auditory functions.


Assuntos
Proliferação de Células , Ciclina D1/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Mitose , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclina D1/genética , Orelha Interna/citologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Camundongos Transgênicos , Miosina VIIa/metabolismo , Emissões Otoacústicas Espontâneas , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Potenciais Evocados Miogênicos Vestibulares
4.
Front Cell Neurosci ; 9: 52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755634

RESUMO

Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.

5.
J Neurosci ; 31(24): 8883-93, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677172

RESUMO

Adult mammalian auditory hair cells (HCs) and their associated supporting cells (SCs) do not proliferate, and HC death leads to irreversible neurosensory hearing loss and balance impairment. In nonmammalian vertebrates, loss of HCs induces mitotic proliferation of adjacent nonsensory SCs and/or direct SC transdifferentiation to generate replacement cells. This results in the structural and functional recovery of the nonmammalian sensory systems. Potential replacement of mammalian auditory HCs, either by transplanting cells or by transforming existing cells through molecular therapy, has long been proposed. However, HC replacement strategies with clear therapeutic potential remain elusive. The retinoblastoma (pRB) family of cell cycle regulators, Rb1, Rbl1 (p107), and Rbl2 (p130), regulate the G(1)- to S-phase transition in proliferating cells. In the inner ear, the biochemical and molecular pathways involving pRBs, particularly p107 and p130, are relatively unexplored and their therapeutic suitability is yet to be determined. In this study, we analyzed the cochleae of adult p130 knock-out (p130(-/-)) mice and showed that lack of the p130 gene results in extra rows of HCs and SCs in the more apical regions of the cochlea. No evidence of transdifferentiation of these supernumerary SCs into HCs was observed in the p130(-/-) mouse. Nevertheless, unscheduled proliferation of SCs in the adult p130(-/-) cochlea coupled to downregulation of bona fide cell cycle inhibitors provides a mechanistic basis for the role of p130 as a regulator of SC and HC mitotic quiescence in the more apical regions of the cochlea. Interestingly, p130(-/-) mice exhibited nearly normal peripheral auditory sensitivity.


Assuntos
Orelha Interna/citologia , Células Ciliadas Auditivas Internas/fisiologia , Células Labirínticas de Suporte/fisiologia , Proteína do Retinoblastoma/deficiência , Estimulação Acústica , Fatores Etários , Animais , Animais Recém-Nascidos , Proliferação de Células , Orelha Interna/embriologia , Embrião de Mamíferos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina VIIa , Miosinas/metabolismo , Emissões Otoacústicas Espontâneas/genética , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Tubulina (Proteína)/metabolismo
6.
Int J Dev Biol ; 51(6-7): 585-95, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17891719

RESUMO

Loss of neurosensory cells of the ear, caused by genetic and non-genetic factors, is becoming an increasing problem as people age, resulting in deafness and vestibular disorders. Unveiling useful mechanisms of cell cycle regulation may offer the possibility to generate new cells out of remaining ones, thus providing the cellular basis to induce new hair cell differentiation in the mammalian ear. Here, we provide an overview of cell cycle regulating genes in general and of those studied in the ear in particular. We categorize those genes into regulators that act upstream of the pocket proteins and into those that act downstream of the pocket proteins. The three members of the pocket protein family essentially determine, through interaction with the eight members of the E2F family, whether or not the cell cycle will progress to the S-phase and thus cell division. The abundant presence of one or more members of these families in adult hair cells supports the notion that inhibition of cell cycle progression through these proteins is a lifelong process. Indeed, manipulating some of those proteins, unfortunately, leads to abortive entry into the cell cycle. Combined with recent success to induce hair cell differentiation through molecular therapy, these approaches may provide a viable strategy to restore lost hair cells in the inner ear.


Assuntos
Ciclo Celular/fisiologia , Orelha Interna/embriologia , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Orelha Interna/metabolismo , Orelha Interna/fisiologia , Embrião de Mamíferos , Previsões , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Organogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA