Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anat ; 245(1): 70-83, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38419169

RESUMO

Congenital heart disease (CHD) is the most common congenital anomaly, with an overall incidence of approximately 1% in the United Kingdom. Exome sequencing in large CHD cohorts has been performed to provide insights into the genetic aetiology of CHD. This includes a study of 1891 probands by our group in collaboration with others, which identified three novel genes-CDK13, PRKD1, and CHD4, in patients with syndromic CHD. PRKD1 encodes a serine/threonine protein kinase, which is important in a variety of fundamental cellular functions. Individuals with a heterozygous mutation in PRKD1 may have facial dysmorphism, ectodermal dysplasia and may have CHDs such as pulmonary stenosis, atrioventricular septal defects, coarctation of the aorta and bicuspid aortic valve. To obtain a greater appreciation for the role that this essential protein kinase plays in cardiogenesis and CHD, we have analysed a Prkd1 transgenic mouse model (Prkd1em1) carrying deletion of exon 2, causing loss of function. High-resolution episcopic microscopy affords detailed morphological 3D analysis of the developing heart and provides evidence for an essential role of Prkd1 in both normal cardiac development and CHD. We show that homozygous deletion of Prkd1 is associated with complex forms of CHD such as atrioventricular septal defects, and bicuspid aortic and pulmonary valves, and is lethal. Even in heterozygotes, cardiac differences occur. However, given that 97% of Prkd1 heterozygous mice display normal heart development, it is likely that one normal allele is sufficient, with the defects seen most likely to represent sporadic events. Moreover, mRNA and protein expression levels were investigated by RT-qPCR and western immunoblotting, respectively. A significant reduction in Prkd1 mRNA levels was seen in homozygotes, but not heterozygotes, compared to WT littermates. While a trend towards lower PRKD1 protein expression was seen in the heterozygotes, the difference was only significant in the homozygotes. There was no compensation by the related Prkd2 and Prkd3 at transcript level, as evidenced by RT-qPCR. Overall, we demonstrate a vital role of Prkd1 in heart development and the aetiology of CHD.


Assuntos
Cardiopatias Congênitas , Coração , Animais , Camundongos , Cardiopatias Congênitas/genética , Coração/embriologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Camundongos Transgênicos
2.
J Cell Sci ; 129(14): 2707-12, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27246243

RESUMO

Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis.


Assuntos
Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Sinais Direcionadores de Proteínas , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Adesão Celular , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Relação Estrutura-Atividade , Survivina
3.
Biochem J ; 418(3): 615-24, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19032148

RESUMO

We have developed a polypeptide lysostaphin FRET (fluorescence resonance energy transfer) substrate (MV11F) for the endopeptidase activity of lysostaphin. Site-directed mutants of lysostaphin that abolished the killing activity against Staphylococcus aureus also completely inhibited the endopeptidase activity against the MV11 FRET substrate. Lysostaphin-producing staphylococci are resistant to killing by lysostaphin through incorporation of serine residues at positions 3 and 5 of the pentaglycine cross-bridge in their cell walls. The MV11 FRET substrate was engineered to introduce a serine residue at each of four positions of the pentaglycine target site and it was found that only a serine residue at position 3 completely inhibited cleavage. The introduction of random, natural amino acid substitutions at position 3 of the pentaglycine target site demonstrated that only a glycine residue at this position was compatible with lysostaphin cleavage of the MV11 FRET substrate. A second series of polypeptide substrates (decoys) was developed with the GFP (green fluorescent protein) domain of MV11 replaced with that of the DNase domain of colicin E9. Using a competition FRET assay, the lysostaphin endopeptidase was shown to bind to a decoy peptide containing a GGSGG cleavage site. The MV11 substrate provides a valuable system to facilitate structure/function studies of the endopeptidase activity of lysostaphin and its orthologues.


Assuntos
Endopeptidases/metabolismo , Lisostafina/química , Peptídeos/química , Clonagem Molecular , Endopeptidases/genética , Transferência Ressonante de Energia de Fluorescência , Lisostafina/farmacologia , Mutagênese Sítio-Dirigida , Peptídeos/síntese química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA