Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Clin Chem ; 70(1): 339-349, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175591

RESUMO

BACKGROUND: B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS: We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS: We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS: This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Mieloma Múltiplo/diagnóstico , Espectrometria de Massas em Tandem , Anticorpos
2.
Cancer Immunol Res ; 10(6): 698-712, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35413104

RESUMO

Bispecific T-cell engager (BiTE) molecules are biologic T cell-directing immunotherapies. Blinatumomab is approved for treatment of B-cell malignancies, but BiTE molecule development in solid tumors has been more challenging. Here, we employed intravital imaging to characterize exposure and pharmacodynamic response of an anti-muCD3/anti-huEGFRvIII mouse surrogate BiTE molecule in EGFR variant III (EGFRvIII)-positive breast tumors implanted within immunocompetent mice. Our study revealed heterogeneous temporal and spatial dynamics of BiTE molecule extravasation into solid tumors, highlighting physical barriers to BiTE molecule function. We also discovered that high, homogeneous EGFRvIII expression on cancer cells was necessary for a BiTE molecule to efficiently clear tumors. In addition, we found that resident tumor-infiltrating lymphocytes (TIL) were sufficient for optimal tumor killing only at high BiTE molecule dosage, whereas inclusion of peripheral T-cell recruitment was synergistic at moderate to low dosages. We report that deletion of stimulatory conventional type I DCs (cDC1) diminished BiTE molecule-induced T-cell activation and tumor clearance, suggesting that in situ antigen-presenting cell (APC) engagements modulate the extent of BiTE molecule efficacy. In summary, our work identified multiple requirements for optimal BiTE molecule efficacy in solid tumors, providing insights that could be harnessed for solid cancer immunotherapy development.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linfócitos B , Imunoterapia/métodos , Ativação Linfocitária , Camundongos , Neoplasias/patologia , Linfócitos T
3.
Front Oncol ; 12: 818641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350575

RESUMO

Bispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial. To this end, computational approaches can be instrumental to systematically exploring the effects of combining bispecific antibodies with CRS intervention strategies. Here, we employ a logical model to describe the action of bispecific antibodies and the complex interplay of various immune system components and use it to perform simulation experiments to improve the understanding of the factors affecting CRS. We performed a sensitivity analysis to identify the comedications that could ameliorate CRS without impairing tumor clearance. Our results agree with publicly available experimental data suggesting anti-TNF and anti-IL6 as possible co-treatments. Furthermore, we suggest anti-IFNγ as a suitable candidate for clinical studies.

4.
Mol Cancer Ther ; 19(9): 1875-1888, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518207

RESUMO

Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines in vitro, in vivo, and ex vivo FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells in vitro, reduced tumor growth and increased survival in AML mouse models in vivo Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys in vivo, including elimination of FLT3-positive cells in blood and bone marrow. In ex vivo cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Anticorpos Biespecíficos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Citotoxicidade Imunológica , Sinergismo Farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Células K562 , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Camundongos , Resultado do Tratamento , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
5.
Drug Metab Dispos ; 48(6): 508-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193357

RESUMO

Experiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation. In a previous study, raloxifene and N-(1-pyrene) iodoacetamide (PIA) alkylated CYP3A4 in vitro; however, only raloxifene influenced enzyme activity. Here, two alkylating agents with cysteine selectivity, PIA and pyrene maleimide (PM), were used to investigate this apparent compound-dependent disconnect between CYP3A4 protein alkylation and activity loss. The compound's effect on 1) enzymatic activity, 2) carbon monoxide (CO) binding capacity, 3) intact heme content, and 4) protein conformation were measured. Results showed that PM had a large time-dependent loss of enzyme activity, whereas PIA did not. The differential effect on enzymatic activity between PM and PIA was mirrored in the CO binding data. Despite disruption of CO binding, neither compound affected the heme concentrations, inferring there was no destruction or alkylation of the heme. Lastly, differential scanning fluorescence showed PM-treated CYP3A4 caused a shift in the onset temperature required to induce protein aggregation, which was not observed for CYP3A4 treated with PIA. In conclusion, alkylation of CYP3A4 apoprotein can have a variable impact on catalytic activity, CO binding, and protein conformation that may be compound-dependent. These results highlight the need for careful interpretation of experimental results aimed at characterizing the nature of P450 enzyme inactivation. SIGNIFICANCE STATEMENT: Understanding the mechanism of CYP3A4 time-dependent inhibition is critical to drug discovery. In this study, we use two cysteine-targeting electrophiles to probe how subtle variation in inhibitor structure may impact the mechanism of CYP3A4 time-dependent inhibition and confound interpretation of traditional diagnostic experiments. Ultimately, this simplified system was used to reveal insights into CYP3A4 biochemical behavior. The insights may have implications that aid in understanding the susceptibility of CYP enzymes to the effects of electrophilic intermediates generated via bioactivation.


Assuntos
Apoproteínas/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Alquilação/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Iodoacetamida/análogos & derivados , Iodoacetamida/química , Iodoacetamida/farmacologia , Maleimidas/química , Maleimidas/farmacologia , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
6.
Drug Metab Dispos ; 47(10): 1111-1121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31387871

RESUMO

The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.


Assuntos
Dor Crônica/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacocinética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Receptores Fc/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Administração Intravenosa , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Criopreservação , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Antígenos de Histocompatibilidade Classe I/genética , Imunoconjugados/administração & dosagem , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Receptores Fc/genética , Distribuição Tecidual , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem
7.
J Immunol Methods ; 470: 55-58, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034878

RESUMO

FMS related tyrosine kinase 3 (FLT-3) is a tyrosine kinase expressed in early hematopoietic precursor cells and has roles in survival, proliferation, and differentiation. Bone marrow expression and mutagenic analysis of FLT-3 in Acute Myeloid Leukemia (AML) patients is well-characterized. However, the levels of circulating FLT-3 in serum have not been previously described. In this study we describe a quantitative electrochemiluminescent immunoassay that detects FLT-3 in human serum. Using this method we find that AML patients have elevated levels of circulating FLT-3 and these levels correlated to the percent blast counts in the bone marrow (BM).


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Leucemia Mieloide Aguda/diagnóstico , Medições Luminescentes/métodos , Tirosina Quinase 3 Semelhante a fms/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Medula Óssea/enzimologia , Medula Óssea/patologia , Técnicas Eletroquímicas/normas , Feminino , Expressão Gênica , Humanos , Imunoensaio/normas , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Luminescência , Medições Luminescentes/normas , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tirosina Quinase 3 Semelhante a fms/genética
8.
Drug Metab Dispos ; 45(7): 712-720, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428366

RESUMO

Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site N-terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the pan-cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers.


Assuntos
Clorpromazina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores de Proteassoma/metabolismo , Administração Oral , Adulto , Clorpromazina/metabolismo , Interações Medicamentosas/fisiologia , Feminino , Meia-Vida , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Proteínas Recombinantes/metabolismo , Triazóis/metabolismo , Adulto Jovem
9.
Bioanalysis ; 8(24): 2551-2563, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27884075

RESUMO

AIM: PCSK9 and Lp(a) have been identified as potential biomarkers for cardiovascular disease. The ability to measure protein turnover rates will provide insights into the dynamic properties of these proteins and lead to better understanding of their biological roles. We aimed to implement the stable isotope-labeled tracers ([2H3]-leucine) and develop a novel LC-selected reaction monitoring (SRM) mass spectrometry (MS) method to study the kinetics of PCSK9 and Lp(a). RESULTS: A sensitive method using immunoaffinity enrichment coupled with LC-SRM MS was developed to measure the production and degradation rates of PCSK9 and Lp(a) in naive nonhuman primate serum. Comparable results were obtained from two different routes of tracer administration. CONCLUSION: Immunoaffinity enrichment coupled with LC-SRM MS demonstrated success in in vivo kinetic measurements of proteins with relatively slow turnover rate (Lp[a]) or low abundance (PCSK9) in serum.


Assuntos
Lipoproteína(a)/sangue , Espectrometria de Massas , Pró-Proteína Convertase 9/sangue , Animais , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Deutério/química , Humanos , Marcação por Isótopo , Leucina/metabolismo , Lipoproteína(a)/metabolismo , Masculino , Peptídeos/análise , Primatas , Pró-Proteína Convertase 9/metabolismo , Tripsina/metabolismo
10.
Mol Pharm ; 13(7): 2387-96, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27248573

RESUMO

Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index.


Assuntos
Anticorpos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animais , Anticorpos/genética , Ligante CD27/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoconjugados/química , Maitansina/metabolismo , Camundongos , Camundongos SCID , Receptores Fc/genética
11.
Cancer Res ; 75(24): 5329-40, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631267

RESUMO

Antibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acid-linker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm. To identify candidate transporters, we performed a phenotypic shRNA screen with an anti-CD70 maytansine-based ADC. This screen revealed the lysosomal membrane protein SLC46A3, the genetic attenuation of which inhibited the potency of multiple noncleavable antibody-maytansine ADCs, including ado-trastuzumab emtansine. In contrast, the potencies of noncleavable ADCs carrying the structurally distinct monomethyl auristatin F were unaffected by SLC46A3 attenuation. Structure-activity experiments suggested that maytansine is a substrate for SLC46A3. Notably, SLC46A3 silencing led to relative increases in catabolite concentrations in the lysosome. Taken together, our results establish SLC46A3 as a direct transporter of maytansine-based catabolites from the lysosome to the cytoplasm, prompting further investigation of SLC46A3 as a predictive response marker in breast cancer specimens.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Imunoconjugados/metabolismo , Maitansina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Citoplasma/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/administração & dosagem , Lisossomos/metabolismo , Maitansina/administração & dosagem
12.
Drug Metab Dispos ; 43(9): 1341-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26101225

RESUMO

Antibody drug conjugates are emerging as a powerful class of antitumor agents with efficacy across a range of cancers; therefore, understanding the disposition of this class of therapeutic is crucial. Reported here is a method of enriching a specific organelle (lysosome) to understand the catabolism of an anti-CD70 Ab-MCC-DM1, an antibody drug conjugate with a noncleavable linker. With such techniques a higher degree of concentration-activity relationship can be established for in vitro cell lines; this can aid in understanding the resultant catabolite concentrations necessary to exert activity.


Assuntos
Imunoconjugados/metabolismo , Lisossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Ligante CD27/imunologia , Linhagem Celular Tumoral , Humanos
13.
Mol Pharmacol ; 82(5): 835-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859722

RESUMO

The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 µM and 0.10 min(-1) and 0.81 µM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.


Assuntos
Cisteína/química , Sistema Enzimático do Citocromo P-450/química , Cloridrato de Raloxifeno/química , Domínio Catalítico , Simulação por Computador , Inibidores das Enzimas do Citocromo P-450 , Ativação Enzimática , Cinética , Modelos Moleculares
14.
Drug Metab Dispos ; 40(12): 2239-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22930276

RESUMO

2-(4-(4-(tert-Butylcarbamoyl)-2-(2-chloro-4-cyclopropylphenylsulfonamido)phenoxy)-5-chloro-2-fluorophenyl)acetic acid (AMG 853) is an orally bioavailable and potent dual antagonist of the D-prostanoid and chemoattractant receptor-homologous molecule expressed on T helper 2 cells receptors. The drug interaction potential of AMG 853, both as a victim and a perpetrator, was investigated using in vitro, in silico, and in vivo methodologies. Experiments in human liver microsomes (HLM) and recombinant enzymes identified CYP2C8, CYP2J2, and CYP3A as well as multiple UDP-glucuronosyltransferase isoforms as being responsible for the metabolic clearance of AMG 853. With use of HLM and selective probe substrates, both AMG 853 and its acyl glucuronide metabolite (M1) were shown to be inhibitors of CYP2C8. AMG 853 and M1 did not inhibit any of the other cytochrome P450 isoforms tested, and AMG 853 exhibited minimal enzyme induction properties in human hepatocytes cultures. In light of the in vitro findings, modeling and simulation approaches were used to examine the potential for ketoconazole (a CYP3A inhibitor) to inhibit the metabolism of AMG 853 as well as for AMG 853 to inhibit the metabolism of paclitaxel, rosiglitazone, and montelukast, commonly used substrates of CYP2C8. A weak and clinically insignificant drug interaction (area under the drug concentration-time curve (AUC)(i)/AUC <2) was predicted between ketoconazole and AMG 853. No drug interactions were predicted for AMG 853 and paclitaxel, rosiglitazone, or montelukast. Finally, administration of AMG 853 to healthy human subjects in clinical trials in the presence or absence of ketoconazole confirmed that AMG 853 is unlikely to be involved in clinically significant drug interactions.


Assuntos
Microssomos Hepáticos/metabolismo , Fenilacetatos/farmacologia , Prostaglandinas/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/metabolismo , Sulfonamidas/farmacologia , Adolescente , Adulto , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Cetoconazol/farmacologia , Cinética , Pulmão/metabolismo , Masculino , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Adulto Jovem
15.
Drug Metab Dispos ; 40(10): 1927-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752008

RESUMO

The in vitro characterization of the inhibition potential of four representative maytansinoid species observed upon hepatic and/or tumor in vivo processing of antibody-maytansine conjugates (AMCs) with cleavable and noncleavable linkers is reported. We investigated the free maytansinoid species N(2')-deacetyl-N(2')-(3-mercapto-1-oxopropyl)-maytansine (DM1), (S)-methyl-DM1, and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) as representative cleavable linker catabolites and Lysine-N(ε)-N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate-DM1 (Lys-MCC-DM1) as the representative noncleavable linker catabolite. Studies with recombinant human cytochromes P450 (P450s) indicate CYP2D6, CYP3A4, and CYP3A5 are the primary isoforms responsible for the oxidative metabolism of DM1, (S)-methyl-DM1, and DM4. Lys-MCC-DM1 was not metabolized by any of the P450 isoforms studied. DM1 was shown to be a reversible inhibitor of CYP2C8 (K(i) = 11 ± 3 µM) and CYP2D6 (K(i) = 14 ± 2 µM). Lys-MCC-DM1 and (S)-methyl-DM1 showed no reversible or time-dependent inactivation of any of the P450s studied. DM1 and DM4 inactivated CYP3A from human liver microsomes with K(i)/k(inact) values of 4.8 ± 0.9 µM/0.035 ± 0.002 min(-1) and 3.3 ± 0.2 µM/0.114 ± 0.002 min(-1), respectively. DM1 and DM4 inactivated recombinant CYP3A4 with K(i)/k(inact) values of 3.4 ± 1.0 µM/0.058 ± 0.005 min(-1) and 1.4 ± 0.3 µM/0.117 ± 0.006 min(-1), respectively. Because of instability in plasma, further characterization of the DM1 and DM4 intramolecular and intermolecular disulfide conjugates observed in vivo is required before an accurate drug-drug interaction (DDI) prediction can be made. AMCs with noncleavable thioether-linked DM1 as the cytotoxic agent are predicted to have no potential for a DDI with any of the major human P450s studied.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Maitansina/farmacologia , Anticorpos Monoclonais/metabolismo , Antineoplásicos/metabolismo , Biotransformação , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Dextrometorfano/metabolismo , Dextrorfano/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Humanos , Imunoconjugados/metabolismo , Cinética , Maitansina/análogos & derivados , Maitansina/metabolismo , Microssomos Hepáticos/enzimologia , Paclitaxel/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Medição de Risco
16.
Drug Metab Dispos ; 39(9): 1546-54, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697463

RESUMO

Understanding the potential for cytochrome P450 (P450)-mediated drug-drug interactions is a critical step in the drug discovery process. Although in vitro studies with CYP3A4, CYP2C9, and CYP2C19 have suggested the presence of multiple binding regions within the P450 active site based on probe substrate-dependent inhibition profiles, similar studies have not been performed with CYP2C8. The ability to understand CYP2C8 probe substrate sensitivity will enable appropriate in vitro and in vivo probe selection. To characterize the potential for probe substrate-dependent inhibition with CYP2C8, the inhibition potency of 22 known inhibitors of CYP2C8 were measured in vitro using four clinically relevant CYP2C8 probe substrates (montelukast, paclitaxel, repaglinide, and rosiglitazone) and amodiaquine. Repaglinide exhibited the highest sensitivity to inhibition in vitro. In vitro phenotyping indicated that montelukast is an appropriate probe for CYP2C8 inhibition studies. The in vivo sensitivities of the CYP2C8 probe substrates cerivastatin, fluvastatin, montelukast, pioglitazone, and rosiglitazone were determined in relation to repaglinide on the basis of clinical drug-drug interaction (DDI) data. Repaglinide exhibited the highest sensitivity in vivo, followed by cerivastatin, montelukast, and pioglitazone. Finally, the magnitude of in vivo CYP2C8 DDI caused by gemfibrozil-1-O-ß-glucuronide was predicted. Comparisons of the predictions with clinical data coupled with the potential liabilities of other CYP2C8 probes suggest that montelukast is an appropriate CYP2C8 probe substrate to use for the in vivo situation.


Assuntos
Acetatos/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Quinolinas/farmacologia , Amodiaquina/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Carbamatos/farmacologia , Ciclopropanos , Citocromo P-450 CYP2C8 , Interações Medicamentosas , Humanos , Microssomos Hepáticos/metabolismo , Paclitaxel/farmacologia , Piperidinas/farmacologia , Rosiglitazona , Sensibilidade e Especificidade , Especificidade por Substrato , Sulfetos , Tiazolidinedionas/farmacologia
17.
Drug Metab Dispos ; 39(8): 1415-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21555507

RESUMO

The cytokine-mediated suppression of hepatic drug-metabolizing enzymes by inflammatory disease and the relief of this suppression by successful disease treatment have recently become an issue in the development of drug interaction labels for new biological products. This study examined the effects of the inflammatory cytokine interleukin-6 (IL-6) on drug-metabolizing enzymes in human hepatocyte culture and the abrogation of these effects by a monoclonal antibody directed against IL-6. Treatment of human hepatocytes with IL-6 (n = 9 donors) revealed pan-suppression of mRNA of 10 major cytochrome P450 isoenzymes, but with EC(50) values that differed by isoenzyme. Some EC(50) values were above the range of clinically relevant serum concentrations of IL-6. Marker activities for CYP1A2 and CYP3A4 enzyme were similarly suppressed by IL-6 in both freshly isolated and cryopreserved hepatocytes. IL-6 suppressed induction of CYP1A2 enzyme activity by omeprazole and CYP3A4 enzyme activity by rifampicin but only at supraphysiological concentrations of IL-6. Glycosylated and nonglycosylated IL-6 did not significantly differ in their ability to suppress CYP1A2 and CYP3A4 enzyme activity. A monoclonal antibody directed against IL-6 abolished or partially blocked IL-6-mediated suppression of CYP1A2 and CYP3A4 enzyme activity, respectively. These data indicate that experimentation with IL-6 and anti-IL-6 monoclonal antibodies in human hepatocyte primary culture can quantitatively measure cytochrome P450 suppression and desuppression and determine EC(50) values for IL-6 against individual cytochrome P450 isoenzymes. However, the complex biology of inflammatory disease may not allow for quantitative in vitro-in vivo extrapolation of these simple in vitro data.


Assuntos
Anticorpos Monoclonais/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/efeitos dos fármacos , Interleucina-6/farmacologia , Preparações Farmacêuticas/metabolismo , Anticorpos Monoclonais/imunologia , Proteína C-Reativa/imunologia , Técnicas de Cultura de Células , Citocromo P-450 CYP1A2/biossíntese , Inibidores do Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A/biossíntese , Inibidores do Citocromo P-450 CYP3A , Células HEK293 , Hepatócitos/enzimologia , Hepatócitos/imunologia , Humanos , Interleucina-6/imunologia , Isoenzimas , Modelos Biológicos , Ligação Proteica , Receptores de Interleucina-6/biossíntese , Proteína Amiloide A Sérica/imunologia , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção
18.
Biochemistry ; 49(12): 2647-56, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20178337

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).


Assuntos
Citocromos b/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Azul de Metileno/farmacologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática , Indóis/farmacologia , Oxirredução , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano/farmacologia
19.
Drug Metab Dispos ; 37(9): 1848-55, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19541824

RESUMO

Mangosteen is a xanthone-containing fruit found in Southeast Asia for which health claims include maintaining healthy immune and gastrointestinal systems to slowing the progression of tumor growth and neurodegenerative diseases. Previous studies have identified multiple xanthones in the pericarp of the mangosteen fruit. The aim of the current study was to assess the drug inhibition potential of mangosteen in vitro as well as the cytochrome P450 (P450) enzymes responsible for the metabolism of its individual components. The various xanthone derivatives were found to be both substrates and inhibitors for multiple P450 isoforms. Aqueous extracts of the mangosteen pericarp were analyzed for xanthone content as well as inhibition potency. Finally, in vivo plasma concentrations of alpha-mangostin, the most abundant xanthone derivative found in mangosteen, were predicted using Simcyp and found to be well above their respective in vitro K(i) values for CYP2C8 and CYP2C9.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Garcinia mangostana/química , Microssomos Hepáticos/enzimologia , Xantonas/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Cinética , Espectrometria de Massas , Microssomos Hepáticos/efeitos dos fármacos , NADP/metabolismo , Preparações Farmacêuticas/metabolismo , Fenótipo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Xantonas/química
20.
Chem Res Toxicol ; 21(5): 1125-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18407675

RESUMO

PH-302 ( 1) demonstrates potent inhibitory activity against the inducible form of nitric oxide synthase (iNOS). The primary metabolite of PH-302 is a catechol ( 2) resulting from oxidative demethylenation of the methylenedioxyphenyl moiety by cytochrome P450 3A4. Concerns regarding subsequent two-electron oxidation of 2 to an electrophilic quinone species and the potential for resulting toxicity prompted additional studies to examine the reactivity and metabolic fate of this metabolite. Contrary to literature reports of catechol reactivity, 2 appeared to be resistant to quinone formation in human liver microsomal incubations, as determined by the lack of detectable glutathione (GSH) adducts and no covalent binding to microsomal proteins. In addition, 2 showed no evidence of depletion of intracellular glutathione or cytotoxicity at concentrations up to 1 mM in primary human and rat hepatocytes. In the presence of tyrosinase, spectral evidence indicated that 2 was oxidized to the ortho-quinone, and upon incubation in the presence of GSH, two conjugates were detected and characterized by LC/MS/MS. Lastly, the metabolic pathways of 2 were investigated in rat and human hepatocytes and found to be similar, proceeding via glucuronidation, sulfation, and methylation of the catechol. Collectively, these studies demonstrate that 2 appears to be resistant to further oxidation to quinone in liver microsomes, as well as spontaneous redox cycling, while the formation of phase II metabolites in hepatocytes suggests that multiple detoxication pathways may provide added protection against toxicity in the liver.


Assuntos
Catecóis/metabolismo , Animais , Catecóis/química , Catecóis/toxicidade , Células Cultivadas , Glutationa/química , Hepatócitos/efeitos dos fármacos , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA