Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 4(24): 6204-6217, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351116

RESUMO

Megakaryocytes (MKs) are responsible for platelet biogenesis, which is believed to occur canonically in adult bone marrow (BM) and in the fetal liver during development. However, emerging evidence highlights the lung as a previously underappreciated residence for MKs that may contribute significantly to circulating platelet mass. Although a diversity of cells specific to the BM is known to promote the maturation and trafficking of MKs, little investigation into the impact of the lung niche on the development and function of MKs has been done. Here, we describe the application of single-cell RNA sequencing, coupled with histological, ploidy, and flow cytometric analyses, to profile primary MKs derived from syngeneic mouse lung and hematopoietic tissues. Transcriptional profiling demonstrated that lung MKs have a unique signature distinct from their hematopoietic counterparts, with lung MKs displaying enrichment for maturation markers, potentially indicating a propensity for more efficient platelet production. Reciprocally, fetal lung MKs also showed the robust expression of cytokines and growth factors that are known to promote lung development. Lastly, lung MKs possess an enrichment profile skewed toward roles in immunity and inflammation. These findings highlight the existence of a lung-specific MK phenotype and support the notion that the lung plays an independent role in the development and functional maturation of MKs. The immune phenotype displayed by lung MKs also introduces their potential role in microbial surveillance and antigen presentation.


Assuntos
Megacariócitos , Trombopoese , Animais , Citometria de Fluxo , Pulmão , Camundongos , Fenótipo
2.
Cell Rep ; 33(13): 108553, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378665

RESUMO

There is an increasing appreciation for the heterogeneity of myeloid lineages in the lung, but relatively little is known about populations specifically associated with the conducting airways. We use single-cell RNA sequencing, flow cytometry, and immunofluorescence to characterize myeloid cells of the mouse trachea during homeostasis and epithelial injury/repair. We identify submucosal macrophages, similar to lung interstitial macrophages, and intraepithelial macrophages. Following injury, there are early increases in neutrophils and submucosal macrophages, including M2-like macrophages. Intraepithelial macrophages are lost after injury and later restored by CCR2+ monocytes. We show that repair of the tracheal epithelium is impaired in Ccr2-deficient mice. Mast cells and group 2 innate lymphoid cells are sources of interleukin-13 (IL-13) that polarize macrophages and directly influence basal cell behaviors. Their proximity to the airway epithelium establishes these myeloid populations as potential therapeutic targets for airway disease.


Assuntos
Células Epiteliais/metabolismo , Epitélio/metabolismo , Homeostase , Macrófagos Alveolares/fisiologia , Células Mieloides/fisiologia , Receptores CCR2/metabolismo , Traqueia/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Epitélio/lesões , Feminino , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Monócitos/metabolismo , Polidocanol , Receptores CCR2/genética , Regeneração , Análise de Sequência de RNA , Análise de Célula Única , Traqueia/lesões
3.
J Gen Physiol ; 151(7): 954-966, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048412

RESUMO

Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.


Assuntos
Potenciais de Ação , Anoctamina-1/metabolismo , Mucosa Olfatória/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Olfatória/fisiologia , Receptores Purinérgicos/metabolismo
4.
Sci Rep ; 7(1): 12397, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963502

RESUMO

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-activated Cl- currents, but unexpectedly also abrogates CFTR-mediated Cl- secretion and completely abolishes cAMP-activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.


Assuntos
Anoctamina-1/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Anoctamina-1/genética , Transporte Biológico , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Camundongos Knockout , Proteínas de Neoplasias/genética
5.
Cell Stem Cell ; 21(1): 120-134.e7, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28506464

RESUMO

To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults.


Assuntos
Pulmão/fisiologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Pneumonectomia , Regeneração/imunologia , Células Th2/imunologia , Animais , Interleucina-13/genética , Interleucina-13/imunologia , Camundongos , Camundongos Knockout , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Regeneração/genética
6.
JCI Insight ; 1(14): e86704, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27699234

RESUMO

Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated ß-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.


Assuntos
Células Epiteliais Alveolares/citologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Telômero/patologia , Animais , Células Cultivadas , Células Epiteliais , Fibrose Pulmonar Idiopática , Camundongos , Encurtamento do Telômero
7.
Nature ; 517(7536): 621-5, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25533958

RESUMO

Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a ΔNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the ΔNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/patologia , Lesão Pulmonar/patologia , Pulmão/citologia , Pulmão/patologia , Reepitelização , Células-Tronco/citologia , Animais , Bleomicina , Linhagem da Célula , Proliferação de Células , Separação Celular , Cistos/metabolismo , Cistos/patologia , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-5/metabolismo , Pulmão/fisiologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/virologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Células-Tronco/metabolismo , Transativadores/genética , Transativadores/metabolismo
8.
Pflugers Arch ; 467(6): 1203-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974903

RESUMO

Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.


Assuntos
Sinalização do Cálcio , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctamina-1 , Anoctaminas , Cálcio/metabolismo , Canais de Cloreto/genética , Camundongos , Especificidade de Órgãos , Proteínas de Transferência de Fosfolipídeos/genética
9.
Dev Cell ; 30(2): 112-4, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25073150

RESUMO

Mammalian lungs are comprised of conducting airways and alveoli. How the distinct epithelial linings of these two zones are differentially specified and maintained is not fully understood. In this issue of Developmental Cell, two groups find critical roles for the Hippo pathway in regulation of lung progenitor cell differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Adultas/citologia , Padronização Corporal , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Pulmão/citologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Traqueia/citologia , Animais , Proteínas de Ciclo Celular , Via de Sinalização Hippo , Proteínas de Sinalização YAP
10.
Kidney Int ; 85(6): 1369-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24476694

RESUMO

The role of calcium-activated chloride channels for renal function is unknown. By immunohistochemistry we demonstrate dominant expression of the recently identified calcium-activated chloride channels, Anoctamin 1 (Ano1, TMEM16A) in human and mouse proximal tubular epithelial (PTE) cells, with some expression in podocytes and other tubular segments. Ano1-null mice had proteinuria and numerous large reabsorption vesicles in PTE cells. Selective knockout of Ano1 in podocytes (Ano1-/-/Nphs2-Cre) did not impair renal function, whereas tubular knockout in Ano1-/-/Ksp-Cre mice increased urine protein excretion and decreased urine electrolyte concentrations. Purinergic stimulation activated calcium-dependent chloride currents in isolated proximal tubule epithelial cells from wild-type but not from Ano1-/-/Ksp-Cre mice. Ano1 currents were activated by acidic pH, suggesting parallel stimulation of Ano1 chloride secretion with activation of the proton-ATPase. Lack of calcium-dependent chloride secretion in cells from Ano1-/-/Ksp-Cre mice was paralleled by attenuated proton secretion and reduced endosomal acidification, which compromised proximal tubular albumin uptake. Tubular knockout of Ano1 enhanced serum renin and aldosterone concentrations, probably leading to enhanced compensatory distal tubular reabsorption, thus maintaining normal blood pressure levels. Thus, Ano1 has a role in proximal tubular proton secretion and protein reabsorption. The results correspond to regulation of the proton-ATPase by the Ano1-homolog Ist2 in yeast.


Assuntos
Canais de Cloreto/metabolismo , Túbulos Renais Proximais/metabolismo , Podócitos/metabolismo , Reabsorção Renal , Trifosfato de Adenosina/farmacologia , Aldosterona/sangue , Animais , Anoctamina-1 , Células Cultivadas , Canais de Cloreto/deficiência , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Feminino , Genótipo , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Podócitos/efeitos dos fármacos , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Reabsorção Renal/efeitos dos fármacos , Renina/sangue , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(40): 16354-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988107

RESUMO

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.


Assuntos
Canais de Cloreto/metabolismo , Mucinas/metabolismo , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Sistema Respiratório/citologia , Sistema Respiratório/metabolismo , Animais , Anoctamina-1 , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência
12.
Cancer Res ; 72(13): 3270-81, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564524

RESUMO

Frequent gene amplification of the receptor-activated calcium-dependent chloride channel TMEM16A (TAOS2 or ANO1) has been reported in several malignancies. However, its involvement in human tumorigenesis has not been previously studied. Here, we show a functional role for TMEM16A in tumor growth. We found TMEM16A overexpression in 80% of head and neck squamous cell carcinoma (SCCHN), which correlated with decreased overall survival in patients with SCCHN. TMEM16A overexpression significantly promoted anchorage-independent growth in vitro, and loss of TMEM16A resulted in inhibition of tumor growth both in vitro and in vivo. Mechanistically, TMEM16A-induced cancer cell proliferation and tumor growth were accompanied by an increase in extracellular signal-regulated kinase (ERK)1/2 activation and cyclin D1 induction. Pharmacologic inhibition of MEK/ERK and genetic inactivation of ERK1/2 (using siRNA and dominant-negative constructs) abrogated the growth effect of TMEM16A, indicating a role for mitogen-activated protein kinase (MAPK) activation in TMEM16A-mediated proliferation. In addition, a developmental small-molecule inhibitor of TMEM16A, T16A-inh01 (A01), abrogated tumor cell proliferation in vitro. Together, our findings provide a mechanistic analysis of the tumorigenic properties of TMEM16A, which represents a potentially novel therapeutic target. The development of small-molecule inhibitors against TMEM16A may be clinically relevant for treatment of human cancers, including SCCHN.


Assuntos
Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica , Canais de Cloreto/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas de Neoplasias/fisiologia , Animais , Anoctamina-1 , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/metabolismo , Divisão Celular , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Progressão da Doença , Ativação Enzimática , Indução Enzimática , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Proc Natl Acad Sci U S A ; 109(13): 4910-5, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411819

RESUMO

Identifying the cells of origin of lung cancer may lead to new therapeutic strategies. Previous work has focused upon the putative bronchoalveolar stem cell at the bronchioalveolar duct junction as a cancer cell of origin when a codon 12 K-Ras mutant is induced via adenoviral Cre inhalation. In the present study, we use two "knock-in" Cre-estrogen receptor alleles to inducibly express K-RasG12D in CC10(+) epithelial cells and Sftpc(+) type II alveolar cells of the adult mouse lung. Analysis of these mice identifies type II cells, Clara cells in the terminal bronchioles, and putative bronchoalveolar stem cells as cells of origin for K-Ras-induced lung hyperplasia. However, only type II cells appear to progress to adenocarcinoma.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Hiperplasia , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares/genética , Camundongos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína C Associada a Surfactante Pulmonar , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo , Transcriptoma/genética , Uteroglobina/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 301(6): G1044-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21940901

RESUMO

Ano1 is a recently discovered Ca(2+)-activated Cl(-) channel expressed on interstitial cells of Cajal (ICC) that has been implicated in slow-wave activity in the gut. However, Ano1 is expressed on all classes of ICC, even those that do not contribute to generation of the slow wave, suggesting that Ano1 may have an alternate function in these cells. Ano1 is also highly expressed in gastrointestinal stromal tumors. Mice lacking Ano1 had fewer proliferating ICC in whole mount preparations and in culture, raising the possibility that Ano1 is involved in proliferation. Cl(-) channel blockers decreased proliferation in cells expressing Ano1, including primary cultures of ICC and in the pancreatic cancer-derived cell line, CFPAC-1. Cl(-) channel blockers had a reduced effect on Ano1(-/-) cultures, confirming that the blockers are acting on Ano1. Ki67 immunoreactivity, 5-ethynyl-2'-deoxyuridine incorporation, and cell-cycle analysis of cells grown in low-Cl(-) media showed fewer proliferating cells than in cultures grown in regular medium. We confirmed that mice lacking Ano1 had less phosphorylated retinoblastoma protein compared with controls. These data led us to conclude that Ano1 regulates proliferation at the G(1)/S transition of the cell cycle and may play a role in tumorigenesis.


Assuntos
Canais de Cloreto/fisiologia , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Pancreáticas/patologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Animais Recém-Nascidos , Anoctamina-1 , Antineoplásicos Hormonais/farmacologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/fisiopatologia , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/fisiopatologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Ácido Niflúmico/farmacologia , Neoplasias Pancreáticas/fisiopatologia , Cultura Primária de Células , Proteína do Retinoblastoma/metabolismo , Tamoxifeno/farmacologia
15.
Annu Rev Cell Dev Biol ; 27: 493-512, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21639799

RESUMO

The vertebrate lung is elegantly patterned to carry out gas exchange and host defense. Similar to other organ systems, endogenous stem and progenitor cells fuel the organogenesis of the lung and maintain homeostasis in the face of normal wear and tear. In the context of acute injury, these progenitor populations are capable of effecting efficient repair. However, chronic injury, inflammation, and immune rejection frequently result in pathological airway remodeling and serious impairment of lung function. Here, we review the development, maintenance, and repair of the vertebrate respiratory system with an emphasis on the roles of epithelial stem and progenitor cells. We discuss what is currently known about their identities, lineage relationships, and the mechanisms that regulate their differentiation along various lineages. A deeper understanding of these progenitor populations will undoubtedly accelerate the discovery of improved cellular, genetic, molecular, and bioengineered therapies for lung disease.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Pneumopatias/fisiopatologia , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/fisiologia , Remodelação das Vias Aéreas , Animais , Diferenciação Celular , Linhagem da Célula , Homeostase , Humanos , Pulmão/patologia , Pulmão/fisiologia , Pneumopatias/patologia , Organogênese/fisiologia , Sistema Respiratório , Cicatrização
16.
Cell Stem Cell ; 8(6): 639-48, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21624809

RESUMO

The epithelium lining the airways of the adult human lung is composed of ciliated and secretory cells together with undifferentiated basal cells (BCs). The composition and organization of this epithelium is severely disrupted in many respiratory diseases. However, little is known about the mechanisms controlling airway homeostasis and repair after epithelial damage. Here, we exploit the mouse tracheobronchial epithelium, in which BCs function as resident stem cells, as a genetically tractable model of human small airways. Using a reporter allele we show that the low level of Notch signaling at steady state is greatly enhanced during repair and the generation of luminal progenitors. Loss-of-function experiments show that Notch signaling is required for the differentiation, but not self-renewal, of BCs. Moreover, sustained Notch activation in BCs promotes their luminal differentiation, primarily toward secretory lineages. We also provide evidence that this function of Notch signaling is conserved in BCs from human airways.


Assuntos
Brônquios/citologia , Diferenciação Celular , Células Epiteliais/citologia , Receptores Notch/metabolismo , Células-Tronco/citologia , Animais , Brônquios/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos , Transdução de Sinais , Células-Tronco/metabolismo
17.
Dis Model Mech ; 3(9-10): 545-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699479

RESUMO

The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.


Assuntos
Remodelação das Vias Aéreas , Epitélio/patologia , Homeostase , Sistema Respiratório/patologia , Células-Tronco/patologia , Animais , Epitélio/metabolismo , Humanos , Sistema Respiratório/metabolismo , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Células-Tronco/metabolismo
18.
PLoS One ; 5(6): e11022, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20548776

RESUMO

BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.


Assuntos
Neoplasias Pulmonares/genética , Pulmão/metabolismo , Oncogenes , Fatores de Transcrição SOXB1/genética , Animais , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Modelos Animais , Reação em Cadeia da Polimerase
19.
J Biol Chem ; 284(42): 28698-703, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19679661

RESUMO

Molecular identification of the Ca(2+)-dependent chloride channel TMEM16A (ANO1) provided a fundamental step in understanding Ca(2+)-dependent Cl(-) secretion in epithelia. TMEM16A is an intrinsic constituent of Ca(2+)-dependent Cl(-) channels in cultured epithelia and may control salivary output, but its physiological role in native epithelial tissues remains largely obscure. Here, we demonstrate that Cl(-) secretion in native epithelia activated by Ca(2+)-dependent agonists is missing in mice lacking expression of TMEM16A. Ca(2+)-dependent Cl(-) transport was missing or largely reduced in isolated tracheal and colonic epithelia, as well as hepatocytes and acinar cells from pancreatic and submandibular glands of TMEM16A(-/-) animals. Measurement of particle transport on the surface of tracheas ex vivo indicated largely reduced mucociliary clearance in TMEM16A(-/-) mice. These results clearly demonstrate the broad physiological role of TMEM16A(-/-) for Ca(2+)-dependent Cl(-) secretion and provide the basis for novel treatments in cystic fibrosis, infectious diarrhea, and Sjöegren syndrome.


Assuntos
Canais de Cloreto/química , Cloretos/metabolismo , Animais , Anoctamina-1 , Cálcio/química , Canais de Cloreto/metabolismo , Cloretos/química , Colo/patologia , AMP Cíclico/metabolismo , Eletrólitos , Células Epiteliais/citologia , Hepatócitos/citologia , Transporte de Íons , Camundongos , Camundongos Knockout , Traqueia/citologia
20.
J Physiol ; 587(Pt 20): 4887-904, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19687122

RESUMO

Interstitial cells of Cajal (ICC) generate pacemaker activity (slow waves) in gastrointestinal (GI) smooth muscles, but the mechanism(s) of pacemaker activity are controversial. Several conductances, such as Ca(2+)-activated Cl() channels (CaCC) and non-selective cation channels (NSCC) have been suggested to be involved in slow wave depolarization. We investigated the expression and function of a new class of CaCC, anoctamin 1 (ANO1), encoded by Tmem16a, which was discovered to be highly expressed in ICC in a microarray screen. GI muscles express splice variants of the Tmem16a transcript in addition to other paralogues of the Tmem16a family. ANO1 protein is expressed abundantly and specifically in ICC in all regions of the murine, non-human primate (Macaca fascicularis) and human GI tracts. CaCC blocking drugs, niflumic acid and 4,4-diisothiocyano-2,2-stillbene-disulfonic acid (DIDS) reduced the frequency and blocked slow waves in murine, primate, human small intestine and stomach in a concentration-dependent manner. Unitary potentials, small stochastic membrane depolarizations thought to underlie slow waves, were insensitive to CaCC blockers. Slow waves failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16a(tm1Bdh)(/tm1Bdh)) and did not develop subsequent to birth in organ culture, as in wildtype and heterozygous muscles. Loss of function of ANO1 did not inhibit the development of ICC networks that appeared structurally normal as indicated by Kit antibodies. These data demonstrate the fundamental role of ANO1 in the generation of slow waves in GI ICC.


Assuntos
Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Células Intersticiais de Cajal/fisiologia , Proteínas de Membrana/metabolismo , Músculo Liso/fisiologia , Proteínas de Neoplasias/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Anoctamina-1 , Canais de Cloreto , Inibidores de Ciclo-Oxigenase/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/citologia , Trato Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/efeitos dos fármacos , Macaca fascicularis , Proteínas de Membrana/genética , Camundongos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Proteínas de Neoplasias/genética , Ácido Niflúmico/farmacologia , RNA/análise , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA