Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 79: 120-126, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159596

RESUMO

Cancer immunotherapy, where a patient's immune system is harnessed to eradicate cancer cells selectively, is a leading strategy for cancer treatment. However, successes with immune checkpoint inhibitors (ICI) are hampered by reported systemic and organ-specific toxicities and by two-thirds of the patients being non-responders or subsequently acquiring resistance to approved ICIs. Hence substantial efforts are invested in discovering novel targeted immunotherapies aimed at reduced side-effects and improved potency. One way is utilizing the dual targeting feature of bispecific antibodies, which have made them increasingly popular for cancer immunotherapy. Easy and predictive screening methods for activation ranking of candidate drugs in tumor contra non-tumor environments are however lacking. Herein, we present a cell-based assay mimicking the tumor microenvironment by co-culturing B cells with engineered human embryonic kidney 293 T cells (HEK293T), presenting a controllable density of platelet-derived growth factor receptor ß (PDGFRß). A target density panel with three different surface protein levels on HEK293T cells was established by genetic constructs carrying regulatory elements limiting RNA translation of PDGFRß. We employed a bispecific antibody-affibody construct called an AffiMab capable of binding PDGFRß on cancer cells and CD40 expressed by B cells as a model. Specific activation of CD40-mediated signaling of immune cells was demonstrated with the two highest receptor-expressing cell lines, Level 2/3 and Level 4, while low-to-none in the low-expressing cell lines. The concept of receptor tuning and the presented co-culture protocol may be of general utility for assessing and developing novel bi-specific antibodies for immuno-oncology applications.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Técnicas de Cocultura , Células HEK293 , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
MAbs ; 15(1): 2223750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332119

RESUMO

CD40 agonism by systemic administration of CD40 monoclonal antibodies has been explored in clinical trials for immunotherapy of cancer, uncovering enormous potential, but also dosing challenges in terms of systemic toxicity. CD40-dependent activation of antigen presenting cells is dependent on crosslinking of the CD40 receptor. Here we exploited this requisite by coupling crosslinking to cancer-receptor density by dual-targeting of CD40 and platelet-derived growth factor receptor beta (PDGFRB), which is highly expressed in the stroma of various types of tumors. A novel PDGFRBxCD40 Fc-silenced bispecific AffiMab was developed to this end to test whether it is possible to activate CD40 in a PDGFRB-targeted manner. A PDGFRB-binding Affibody molecule was fused to each heavy chain of an Fc-silenced CD40 agonistic monoclonal antibody to obtain a bispecific "AffiMab". Binding of the AffiMab to both PDGFRB and CD40 was confirmed by surface plasmon resonance, bio-layer interferometry and flow cytometry, through analysis of cells expressing respective target. In a reporter assay, the AffiMab displayed increased CD40 potency in the presence of PDGFRB-conjugated beads, in a manner dependent on PDGFRB amount/bead. To test the concept in immunologically relevant systems with physiological levels of CD40 expression, the AffiMab was tested in human monocyte-derived dendritic cells (moDCs) and B cells. Expression of activation markers was increased in moDCs specifically in the presence of PDGFRB-conjugated beads upon AffiMab treatment, while the Fc-silenced CD40 mAb did not stimulate CD40 activation. As expected, the AffiMab did not activate moDCs in the presence of unconjugated beads. Finally, in a co-culture experiment, the AffiMab activated moDCs and B cells in the presence of PDGFRB-expressing cells, but not in co-cultures with PDGFRB-negative cells. Collectively, these results suggest the possibility to activate CD40 in a PDGFRB-targeted manner in vitro. This encourages further investigation and the development of such an approach for the treatment of solid cancers.


Assuntos
Neoplasias , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Humanos , Antígenos CD40 , Anticorpos Monoclonais , Monócitos/metabolismo
3.
Sci Rep ; 11(1): 16767, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408239

RESUMO

Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.


Assuntos
Proteínas Morfogenéticas Ósseas/imunologia , Fatores de Diferenciação de Crescimento/imunologia , Fatores Imunológicos/imunologia , Interferon-alfa/imunologia , Proteínas Associadas a Pancreatite/imunologia , Linfócitos T Reguladores/imunologia , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/genética , Humanos , Fatores Imunológicos/genética , Interferon-alfa/genética , Proteínas Associadas a Pancreatite/genética
4.
Drugs R D ; 21(2): 157-168, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721246

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) have proved to be a valuable tool for the treatment of different cancer types. However, clinical use of an increasing number of mAbs, have also highlighted limitations with monotherapy for cancers, in particular for such with more complex mechanisms, requiring action on additional molecules or pathways, or for cancers quickly acquiring resistance following monotherapy. An example for the latter is the mAb trastuzumab, FDA approved for treatment of metastatic gastric carcinoma. To circumvent this, researchers have reported synergistic, anti-proliferative effects by combination targeting of HER2 and EGFR by trastuzumab and the EGFR-targeting mAb Cetuximab overcoming trastuzumab resistance. METHODS: Maintaining the proven functionality of trastuzumab, we have designed bi-specific antibody molecules, called AffiMabs, by fusing an EGFR-targeting Affibody molecule to trastuzumab's heavy or light chains. Having confirmed binding to EGFR and Her2 and cytotoxicity of our AffiMabs, we analyzed apoptosis rate, receptor surface levels, phosphorylation levels of receptors and associated signaling pathways as well as differentially expressed genes on transcriptome level with the aim to elucidate the mode of action of our AffiMabs. RESULTS: The AffiMabs are able to simultaneously bind HER2 and EGFR and show increased cytotoxic effect compared to the original trastuzumab therapeutic molecule and, more importantly, even to the combination of trastuzumab and EGFR-targeting Affibody molecule. Analyzing the mode of action, we could show that bi-specific AffiMabs lead to reduced surface receptor levels and a downregulation of cell cycle associated genes on transcriptome level. CONCLUSION: Our study shows that transcriptome analysis can be used to validate the choice of receptor targets and guide the design of novel multi-specific molecules. The inherent modularity of the AffiMab format renders it readily applicable to other receptor targets.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Proliferação de Células , Humanos , Trastuzumab/farmacologia
5.
Mol Pharm ; 18(1): 328-337, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33259222

RESUMO

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life.


Assuntos
Proteínas Recombinantes de Fusão/metabolismo , Albumina Sérica/metabolismo , Proteínas de Bactérias/metabolismo , Meia-Vida , Expectativa de Vida , Ligação Proteica/fisiologia , Streptococcus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Methods Mol Biol ; 1785: 1-10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29714008

RESUMO

Antibodies are protein molecules used routinely for therapeutic, diagnostic, and research purposes due to their exquisite ability to selectively recognize and bind a given antigen. The particular area of the antigen recognized by the antibody is called the epitope, and for proteinaceous antigens the epitope can be of complex nature. Information about the binding epitope of an antibody can provide important mechanistic insights and indicate for what applications an antibody might be useful. Therefore, a variety of epitope mapping techniques have been developed to localize such regions. Although the real picture is even more complex, epitopes in protein antigens are broadly grouped into linear or discontinuous epitopes depending on the positioning of the epitope residues in the antigen sequence and the requirement of structure. Specialized methods for mapping of the two different classes of epitopes, using high-throughput or high-resolution methods, have been developed. While different in their detail, all of the experimental methods rely on assessing the binding of the antibody to the antigen or a set of antigen mimics. Early approaches utilizing sets of truncated proteins, small numbers of synthesized peptides, and structural analyses of antibody-antigen complexes have been significantly refined. Current state-of-the-art methods involve combinations of mutational scanning, protein display, and high-throughput screening in conjunction with bioinformatic analyses of large datasets.


Assuntos
Antígenos/imunologia , Biologia Computacional/métodos , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos/genética , Epitopos de Linfócito B/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Peptídeos/genética , Peptídeos/imunologia
7.
Microb Cell Fact ; 14: 167, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26474754

RESUMO

BACKGROUND: There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. RESULTS: An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin-Benson-Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden-Meyerhof-Parnas and a reduced butanol ATP demand. CONCLUSION: These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies.


Assuntos
1-Butanol/metabolismo , Acetilcoenzima A/metabolismo , Synechocystis/metabolismo , 1-Butanol/química , Trifosfato de Adenosina/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Biomassa , Engenharia Metabólica , Metaboloma , NAD/química , NAD/metabolismo , Nitrogênio/metabolismo
8.
PLoS One ; 10(3): e0121673, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816293

RESUMO

An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets.


Assuntos
Anticorpos/imunologia , Cromatografia de Afinidade/métodos , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/metabolismo , Animais , Humanos , Imunização , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
9.
Science ; 347(6220): 1260419, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613900

RESUMO

Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Processamento Alternativo , Linhagem Celular , Feminino , Genes , Código Genético , Humanos , Internet , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise Serial de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Distribuição Tecidual , Transcrição Gênica
10.
Mol Oncol ; 9(2): 398-408, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25306393

RESUMO

The synergistic interaction of two antibodies targeting the same protein could be developed as an effective anti-cancer therapy. Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast and gastric cancer patients, and HER2-targeted antibody therapy using trastuzumab is effective in many of these patients. Nonetheless, improving therapeutic efficacy and patient survival is important, particularly in patients with HER2-positive gastric cancer. Here, we describe the development of 1E11, a HER2-targeted humanized monoclonal antibody showing increased efficacy in a highly synergistic manner in combination with trastuzumab in the HER2-overexpressing gastric cancer cell lines NCI-N87 and OE-19. The two antibodies bind to sub-domain IV of the receptor, but have non-overlapping epitopes, allowing them to simultaneously bind HER2. Treatment with 1E11 alone induced apoptosis in HER2-positive cancer cells, and this effect was enhanced by combination treatment with trastuzumab. Combination treatment with 1E11 and trastuzumab reduced the levels of total HER2 protein and those of aberrant HER2 signaling molecules including phosphorylated HER3 and EGFR. The synergistic antitumor activity of 1E11 in combination with trastuzumab indicates that it could be a novel potent therapeutic antibody for the treatment of HER2-overexpressing gastric cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Antineoplásicos/farmacologia , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Trastuzumab
11.
N Biotechnol ; 31(1): 35-43, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24120493

RESUMO

One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Neoplasias da Mama/imunologia , Epitopos/imunologia , Peptídeos/imunologia , Receptor ErbB-2/imunologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Coelhos
12.
J Proteome Res ; 12(6): 2439-48, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23276153

RESUMO

A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).


Assuntos
Anticorpos/química , Cromossomos Humanos/química , Projeto Genoma Humano , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/química , Proteoma/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Sci Rep ; 2: 706, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050090

RESUMO

As antibody-based diagnosis and therapy grow at an increased pace, there is a need for methods which rapidly and accurately determine antibody-antigen interactions. Here, we report a method for the multiplex determination of antibody epitopes using bacterial cell-surface display. A protein-fragment library with 10(7) cell clones, covering 60 clinically-relevant protein targets, was created and characterized with massively parallel sequencing. Using this multi-target fragment library we determined simultaneously epitopes of commercial monoclonal and polyclonal antibodies targeting PSMA, EGFR, and VEGF. Off-target binding was observed for one of the antibodies, which demonstrates the methods ability to reveal cross-reactivity. We exemplify the detection of structural epitopes by mapping the therapeutic antibody Avastin. Based on our findings we suggest this method to be suitable for mapping linear and structural epitopes of monoclonal and polyclonal antibodies in a multiplex fashion and could find applicability in serum profiling as well as other protein-protein interaction studies.


Assuntos
Anticorpos Monoclonais Humanizados/análise , Anticorpos/análise , Mapeamento de Epitopos/métodos , Epitopos/análise , Ensaios de Triagem em Larga Escala , Staphylococcus/genética , Anticorpos/química , Anticorpos/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Especificidade de Anticorpos , Bevacizumab , Reações Cruzadas , Cisteína Endopeptidases/imunologia , Epitopos/química , Epitopos/imunologia , Receptores ErbB/imunologia , Biblioteca Gênica , Humanos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Análise de Sequência de DNA , Fator A de Crescimento do Endotélio Vascular/imunologia
14.
Mol Cell Proteomics ; 11(12): 1790-800, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22984286

RESUMO

Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against linear epitopes of the human proteome and obtained very detailed descriptions of the involved specificities. The epitopes identified ranged from 4 to 12 amino acids in size. In general, the antibodies were of exquisite specificity, frequently disallowing even single conservative substitutions. In several cases, multiple distinct epitopes could be identified for the same target protein, suggesting an efficient approach to the generation of paired antibodies. Two alternative epitope mapping approaches identified similar, although not necessarily identical, epitopes. These results show that ultrahigh-density peptide microarrays can be used for linear epitope mapping. With an upper theoretical limit of 2,000,000 individual peptides per array, these peptide microarrays may even be used for a systematic validation of antibodies at the proteomic level.


Assuntos
Anticorpos/análise , Mapeamento de Epitopos/métodos , Epitopos/análise , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Peptídeos/imunologia , Análise Serial de Proteínas , Proteoma/imunologia , Coelhos
15.
Protein Sci ; 20(11): 1824-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898641

RESUMO

A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Biomarcadores Tumorais/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Linhagem Celular , Dipeptidases/imunologia , Epitopos/química , Imunofluorescência , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Proteínas dos Microfilamentos/imunologia , Neoplasias , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/imunologia , Fatores de Transcrição/imunologia
16.
Protein Sci ; 18(11): 2346-55, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19760667

RESUMO

A great need exists for prediction of antibody response for the generation of antibodies toward protein targets. Earlier studies have suggested that prediction methods based on hydrophilicity propensity scale, in which the degree of exposure of the amino acid in an aqueous solvent is calculated, has limited value. Here, we show a comparative analysis based on 12,634 affinity-purified antibodies generated in a standardized manner against human recombinant protein fragments. The antibody response (yield) was measured and compared to theoretical predictions based on a large number (544) of published propensity scales. The results show that some of the scales have predictive power, although the overall Pearson correlation coefficient is relatively low (0.2) even for the best performing amino acid indices. Based on the current data set, a new propensity scale was calculated with a Pearson correlation coefficient of 0.25. The values correlated in some extent to earlier scales, including large penalty for hydrophobic and cysteine residues and high positive contribution from acidic residues, but with relatively low positive contribution from basic residues. The fraction of immunogens generating low antibody responses was reduced from 30% to around 10% if immunogens with a high propensity score (>0.48) were selected as compared to immunogens with lower scores (<0.29). The study demonstrates that a propensity scale might be useful for prediction of antibody response generated by immunization of recombinant protein fragments. The data set presented here can be used for further studies to design new prediction tools for the generation of antibodies to specific protein targets.


Assuntos
Formação de Anticorpos/imunologia , Modelos Imunológicos , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes/imunologia , Algoritmos , Antígenos/genética , Antígenos/imunologia , Biologia Computacional/métodos , Genes/imunologia , Humanos , Imunização , Modelos Lineares , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética
17.
Mol Oncol ; 3(3): 238-47, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19393584

RESUMO

Antibodies have become valuable therapeutic agents for targeting of extracellular proteins in various diseases, including cancer, autoimmunity and cardiovascular disorders. For breast cancer, antibodies targeting the human HER2 have been shown to result in cell growth inhibition both in vitro and in patients with breast tumors. There is evidence to suggest that targeting multiple HER2 epitopes may result in increased growth inhibition making it interesting to find antibodies targeting new epitopes. Here, we report on a new scheme to discover antibodies directed to new epitopes using the extracellular domain of the HER2 as a model. Polyclonal antibodies were generated using recombinant protein fragments and affinity purified fractions of the antibodies were functionally characterized and precisely epitope mapped using bacterial surface display. Polyclonal antibodies towards a 127 amino acid recombinant protein fragment spanning between domains II and III of the HER2 were shown to bind to human ductal carcinoma cell line BT474 resulting in growth inhibition. Affinity purification demonstrated that antibodies to two separate regions from the N- and C-terminal end of the fragment exhibited the growth inhibition. Epitope mapping of the C-terminal antibodies revealed a 25 amino acid region (LPESFDGDPASNTAPLQPEQLQVF) with two distinct epitopes mediating efficient growth inhibition. The results suggest that antibodies directed towards this region of domain III of the HER2, distinct from the well-known monoclonal antibodies trastuzumab and pertuzumab, bind to the HER2 on living cells and exhibit growth inhibition. The work describes a new strategy to develop antibodies directed to non-overlapping epitopes and shows a path of pursuit to explore the epitope space of a target protein.


Assuntos
Anticorpos Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Carcinoma Ductal/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Antineoplásicos/genética , Anticorpos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Ductal/tratamento farmacológico , Carcinoma Ductal/genética , Linhagem Celular Tumoral , Epitopos/genética , Feminino , Humanos , Estrutura Terciária de Proteína , Coelhos , Receptor ErbB-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
18.
Mol Cell Proteomics ; 4(12): 1920-32, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16127175

RESUMO

Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, approximately 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.


Assuntos
Anticorpos Antineoplásicos/química , Anticorpos/química , Neoplasias/imunologia , Proteoma/imunologia , Anticorpos/isolamento & purificação , Anticorpos Antineoplásicos/isolamento & purificação , Western Blotting , Cromatografia de Afinidade , Bases de Dados de Proteínas , Epitopos/química , Etiquetas de Sequências Expressas , Humanos , Neoplasias/genética , Proteínas/imunologia , Proteoma/isolamento & purificação , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA