Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113187, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777968

RESUMO

Early-life stress and ovarian hormones contribute to increased female vulnerability to cocaine addiction. Here, we reveal molecular substrates in the reward area, the nucleus accumbens, through which these female-specific factors affect immediate and conditioning responses to cocaine. We find shared involvement of X chromosome inactivation-related and estrogen signaling-related gene regulation in enhanced conditioning responses following early-life stress and during the low-estrogenic state in females. Low-estrogenic females respond to acute cocaine by opening neuronal chromatin enriched for the sites of ΔFosB, a transcription factor implicated in chronic cocaine response and addiction. Conversely, high-estrogenic females respond to cocaine by preferential chromatin closing, providing a mechanism for limiting cocaine-driven chromatin and synaptic plasticity. We find that physiological estrogen withdrawal, early-life stress, and absence of one X chromosome all nullify the protective effect of a high-estrogenic state on cocaine conditioning in females. Our findings offer a molecular framework to enable understanding of sex-specific neuronal mechanisms underlying cocaine use disorder.


Assuntos
Experiências Adversas da Infância , Cocaína , Masculino , Feminino , Humanos , Cocaína/farmacologia , Núcleo Accumbens , Cromatina , Estrogênios/farmacologia
2.
J Neuroendocrinol ; 35(2): e13216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580348

RESUMO

The activity of neurons in the rodent hippocampus contributes to diverse behaviors, with the activity of ventral hippocampal neurons affecting behaviors related to anxiety and emotion regulation, and the activity of dorsal hippocampal neurons affecting performance in learning- and memory-related tasks. Hippocampal cells also express receptors for ovarian hormones, estrogen and progesterone, and are therefore affected by physiological fluctuations of those hormones that occur over the rodent estrous cycle. In this review, we discuss the effects of cycling ovarian hormones on hippocampal physiology. Starting with behavior, we explore the role of the estrous cycle in regulating hippocampus-dependent behaviors. We go on to detail the cellular mechanisms through which cycling estrogen and progesterone, through changes in the structural and functional properties of hippocampal neurons, may be eliciting these changes in behavior. Then, providing a basis for these cellular changes, we outline the epigenetic, chromatin regulatory mechanisms through which ovarian hormones, by binding to their receptors, can affect the regulation of behavior- and synaptic plasticity-related genes in hippocampal neurons. We also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the estrous cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. Finally, we discuss directions for future studies and the translational value of the rodent estrous cycle for understanding the effects of the human menstrual cycle on hippocampal physiology and brain disease risk.


Assuntos
Simulação de Dinâmica Molecular , Progesterona , Feminino , Humanos , Progesterona/farmacologia , Hipocampo/metabolismo , Ciclo Estral/metabolismo , Estrogênios/metabolismo , Cromatina/metabolismo
3.
Nat Commun ; 13(1): 3438, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705546

RESUMO

The female mammalian brain exhibits sex hormone-driven plasticity during the reproductive period. Recent evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped the 3D genome of ventral hippocampal neurons across the oestrous cycle and by sex in mice. In females, we find cycle-driven dynamism in 3D chromatin organization, including in oestrogen response elements-enriched X chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising oestrogen levels, the female 3D genome becomes more similar to the male 3D genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes and pathways. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk.


Assuntos
Encéfalo , Cromatina , Genoma , Animais , Encéfalo/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Estrogênios/metabolismo , Feminino , Genoma/genética , Genoma/fisiologia , Masculino , Mamíferos/genética , Camundongos , Regiões Promotoras Genéticas/genética , Caracteres Sexuais
4.
Front Neuroendocrinol ; 66: 101010, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716803

RESUMO

Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.


Assuntos
Depressão , Hormônios Esteroides Gonadais , Transtornos de Ansiedade/etiologia , Encéfalo/metabolismo , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino
5.
Nat Commun ; 10(1): 2851, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253786

RESUMO

Male and female brains differ significantly in both health and disease, and yet the female brain has been understudied. Sex-hormone fluctuations make the female brain particularly dynamic and are likely to confer female-specific risks for neuropsychiatric disorders. The molecular mechanisms underlying the dynamic nature of the female brain structure and function are unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse fluctuates with the oestrous cycle. We find chromatin organizational changes associated with the transcriptional activity of genes important for neuronal function and behaviour. We link these chromatin dynamics to variation in anxiety-related behaviour and brain structure. Our findings implicate an immediate-early gene product, Egr1, as part of the mechanism mediating oestrous cycle-dependent chromatin and transcriptional changes. This study reveals extreme, sex-specific dynamism of the neuronal epigenome, and establishes a foundation for the development of sex-specific treatments for disorders such as anxiety and depression.


Assuntos
Encéfalo/fisiologia , Cromatina/fisiologia , Ciclo Estral/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigenômica , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Progesterona/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA