Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37314226

RESUMO

EZH1, a polycomb repressive complex-2 component, is involved in a myriad of cellular processes. EZH1 represses transcription of downstream target genes through histone 3 lysine27 (H3K27) trimethylation (H3K27me3). Genetic variants in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo missense variant in EZH1 through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and an analogous somatic or germline mutation in EZH2 has been reported in patients with B-cell lymphoma or Weaver syndrome, respectively. Human EZH1/2 are homologous to fly Enhancer of zeste (E(z)), an essential gene in Drosophila, and the affected residue (p.A678 in humans, p.A691 in flies) is conserved. To further study this variant, we obtained null alleles and generated transgenic flies expressing wildtype [E(z)WT] and the variant [E(z)A691G]. When expressed ubiquitously the variant rescues null-lethality similar to the wildtype. Overexpression of E(z)WT induces homeotic patterning defects but notably the E(z)A691G variant leads to dramatically stronger morphological phenotypes. We also note a dramatic loss of H3K27me2 and a corresponding increase in H3K27me3 in flies expressing E(z)A691G, suggesting this acts as a gain-of-function allele. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila.


Assuntos
Drosophila melanogaster , Histonas , Animais , Humanos , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Complexo Repressor Polycomb 2
2.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36067766

RESUMO

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Assuntos
Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Animais , DNA Complementar , Drosophila/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana , Microcefalia/genética , Proteínas dos Microfilamentos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/genética , Fenótipo
3.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
4.
Genet Med ; 24(11): 2240-2248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997716

RESUMO

PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.


Assuntos
Encéfalo , Anormalidades Congênitas , Variação Genética , Genoma Humano , Humanos , Encéfalo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Anormalidades Congênitas/genética , Testes Genéticos , Variação Genética/genética , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
5.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395208

RESUMO

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Assuntos
Proteína 7 com Repetições F-Box-WD , Transtornos do Neurodesenvolvimento , Ubiquitinação , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Ann Neurol ; 88(6): 1153-1164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959437

RESUMO

OBJECTIVE: Congenital structural brain malformations have been described in patients with pathogenic phosphatase and tensin homologue (PTEN) variants, but the frequency of cortical malformations in patients with PTEN variants and their impact on clinical phenotype are not well understood. Our goal was to systematically characterize brain malformations in patients with PTEN variants and assess the relevance of their brain malformations to clinical presentation. METHODS: We systematically searched a local radiology database for patients with PTEN variants who had available brain magnetic resonance imaging (MRI). The MRI scans were reviewed systematically for cortical abnormalities. We reviewed electroencephalogram (EEG) data and evaluated the electronic medical record for evidence of epilepsy and developmental delay. RESULTS: In total, we identified 22 patients with PTEN pathogenic variants for which brain MRIs were available (age range 0.4-17 years). Twelve among these 22 patients (54%) had polymicrogyria (PMG). Variants associated with PMG or atypical gyration encoded regions of the phosphatase or C2 domains of PTEN. Interestingly, epilepsy was present in only 2 of the 12 patients with PMG. We found a trend toward higher rates of global developmental delay (GDD), intellectual disability (ID), and motor delay in individuals with cortical abnormalities, although cohort size limited statistical significance. INTERPRETATION: Malformations of cortical development, PMG in particular, represent an under-recognized phenotype associated with PTEN pathogenic variants and may have an association with cognitive and motor delays. Epilepsy was infrequent compared to the previously reported high risk of epilepsy in patients with PMG. ANN NEUROL 2020;88:1153-1164.


Assuntos
Deficiências do Desenvolvimento/epidemiologia , Deficiência Intelectual/epidemiologia , PTEN Fosfo-Hidrolase/genética , Polimicrogiria/epidemiologia , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Comorbidade , Bases de Dados Genéticas/estatística & dados numéricos , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Massachusetts/epidemiologia , Neuroimagem , Polimicrogiria/genética , Polimicrogiria/patologia
7.
Am J Med Genet A ; 182(1): 189-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633297

RESUMO

Hennekam lymphangiectasia-lymphedema syndrome is an autosomal recessive disorder characterized by congenital lymphedema, intestinal lymphangiectasia, facial dysmorphism, and variable intellectual disability. Known disease genes include CCBE1, FAT4, and ADAMTS3. In a patient with clinically diagnosed Hennekam syndrome but without mutations or copy-number changes in the three known disease genes, we identified a homozygous single-exon deletion affecting FBXL7. Specifically, exon 3, which encodes the F-box domain and several leucine-rich repeats of FBXL7, is eliminated. Our analyses of databases representing >100,000 control individuals failed to identify biallelic loss-of-function variants in FBXL7. Published studies in Drosophila indicate Fbxl7 interacts with Fat, of which human FAT4 is an ortholog, and mutation of either gene yields similar morphological consequences. These data suggest that FBXL7 may be the fourth gene for Hennekam syndrome, acting via a shared pathway with FAT4.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas F-Box/genética , Predisposição Genética para Doença , Linfangiectasia Intestinal/genética , Linfedema/genética , Proteínas ADAMTS/genética , Alelos , Animais , Pré-Escolar , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/patologia , Drosophila melanogaster/genética , Genótipo , Homozigoto , Humanos , Linfangiectasia Intestinal/complicações , Linfangiectasia Intestinal/patologia , Linfedema/complicações , Linfedema/patologia , Masculino , Técnicas de Diagnóstico Molecular/métodos , Mutação/genética , Linhagem , Fenótipo , Pró-Colágeno N-Endopeptidase/genética
8.
Nat Commun ; 9(1): 4619, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397230

RESUMO

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.


Assuntos
DNA Helicases/genética , Deficiências do Desenvolvimento/genética , Transtornos da Linguagem/genética , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos/genética , Distúrbios da Fala/genética , Adenosina Trifosfatases , Pré-Escolar , Montagem e Desmontagem da Cromatina , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/genética , Masculino , Modelos Moleculares , Fenótipo , Sequenciamento Completo do Genoma
9.
Am J Med Genet A ; 176(12): 2554-2560, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30475435

RESUMO

Polyamines serve a number of vital functions in humans, including regulation of cellular proliferation, intracellular signaling, and modulation of ion channels. Ornithine decarboxylase 1 (ODC1) is the rate-limiting enzyme in endogenous polyamine synthesis. In this report, we present four patients with a distinct neurometabolic disorder associated with de novo heterozygous, gain-of-function variants in the ODC1 gene. This disorder presents with global developmental delay, ectodermal abnormalities including alopecia, absolute or relative macrocephaly, and characteristic facial dysmorphisms. Neuroimaging variably demonstrates white matter abnormalities, prominent Virchow-Robin spaces, periventricular cysts, and abnormalities of the corpus callosum. Plasma clinical metabolomics analysis demonstrates elevation of N-acetylputrescine, the acetylated form of putrescine, with otherwise normal polyamine levels. Therapies aimed at reducing putrescine levels, including ODC1 inhibitors, dietary interventions, and antibiotics to reduce polyamine production by gastrointestinal flora could be considered as disease-modifying therapies. As the ODC1 gene has been implicated in neoplasia, cancer surveillance may be important in this disorder.


Assuntos
Alopecia/genética , Transtornos Dismórficos Corporais/genética , Transportadores de Ácidos Dicarboxílicos/genética , Mutação com Ganho de Função , Megalencefalia/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Alelos , Alopecia/diagnóstico , Transtornos Dismórficos Corporais/diagnóstico , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Eletroencefalografia , Fácies , Feminino , Genótipo , Humanos , Masculino , Megalencefalia/diagnóstico , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Neuroimagem/métodos , Testes Neuropsicológicos , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Mol Genet Metab ; 125(1-2): 118-126, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031689

RESUMO

Folate metabolism in the brain is critically important and serves a number of vital roles in nucleotide synthesis, single carbon metabolism/methylation, amino acid metabolism, and mitochondrial translation. Genetic defects in almost every enzyme of folate metabolism have been reported to date, and most have neurological sequelae. We report 2 patients presenting with a neurometabolic disorder associated with biallelic variants in the MTHFS gene, encoding 5,10-methenyltetrahydrofolate synthetase. Both patients presented with microcephaly, short stature, severe global developmental delay, progressive spasticity, epilepsy, and cerebral hypomyelination. Baseline CSF 5-methyltetrahydrolate (5-MTHF) levels were in the low-normal range. The first patient was treated with folinic acid, which resulted in worsening cerebral folate deficiency. Treatment in this patient with a combination of oral L-5-methyltetrahydrofolate and intramuscular methylcobalamin was able to increase CSF 5-MTHF levels, was well tolerated over a 4 month period, and resulted in subjective mild improvements in functioning. Measurement of MTHFS enzyme activity in fibroblasts confirmed reduced activity. The direct substrate of the MTHFS reaction, 5-formyl-THF, was elevated 30-fold in patient fibroblasts compared to control, supporting the hypothesis that the pathophysiology of this disorder is a manifestation of toxicity from this metabolite.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Carbono-Nitrogênio Ligases/genética , Epilepsia/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos Psicomotores/genética , Sistemas de Transporte de Aminoácidos Acídicos/líquido cefalorraquidiano , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/líquido cefalorraquidiano , Antiporters/genética , Antiporters/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Carbono-Nitrogênio Ligases/líquido cefalorraquidiano , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/metabolismo , Epilepsia/líquido cefalorraquidiano , Epilepsia/complicações , Epilepsia/patologia , Feminino , Receptor 1 de Folato/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/líquido cefalorraquidiano , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/complicações , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Masculino , Doenças Metabólicas/líquido cefalorraquidiano , Doenças Metabólicas/complicações , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Microcefalia/líquido cefalorraquidiano , Microcefalia/complicações , Microcefalia/patologia , Doenças Mitocondriais/líquido cefalorraquidiano , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Malformações do Sistema Nervoso/líquido cefalorraquidiano , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Distrofias Neuroaxonais , Transtornos Psicomotores/líquido cefalorraquidiano , Transtornos Psicomotores/complicações , Transtornos Psicomotores/metabolismo , Tetra-Hidrofolatos/líquido cefalorraquidiano , Tetra-Hidrofolatos/metabolismo
11.
Ann Neurol ; 83(6): 1089-1095, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518281

RESUMO

VPS13 protein family members VPS13A through VPS13C have been associated with various recessive movement disorders. We describe the first disease association of rare recessive VPS13D variants including frameshift, missense, and partial duplication mutations with a novel complex, hyperkinetic neurological disorder. The clinical features include developmental delay, a childhood onset movement disorder (chorea, dystonia, or tremor), and progressive spastic ataxia or paraparesis. Characteristic brain magnetic resonance imaging shows basal ganglia or diffuse white matter T2 hyperintensities as seen in Leigh syndrome and choreoacanthocytosis. Muscle biopsy in 1 case showed mitochondrial aggregates and lipidosis, suggesting mitochondrial dysfunction. These findings underline the importance of the VPS13 complex in neurological diseases and a possible role in mitochondrial function. Ann Neurol 2018;83:1089-1095.


Assuntos
Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Gânglios da Base/patologia , Encéfalo/patologia , Criança , Humanos , Doença de Leigh/patologia , Imageamento por Ressonância Magnética/métodos , Espasticidade Muscular/patologia , Linhagem
12.
JIMD Rep ; 31: 73-77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27130472

RESUMO

Transaldolase deficiency is a rare autosomal recessive disorder of the pentose phosphate pathway that presents clinically with infantile-onset hepatopathy progressing to cirrhosis, nephropathy, connective tissue abnormalities resembling cutis laxa, coagulopathy, cytopenias, and increased risk of hepatocellular carcinoma. In many cases, death occurs in infancy or early childhood. There is no established treatment for transaldolase deficiency in humans. Recent work in a knockout mouse model of transaldolase deficiency has demonstrated a benefit to supplementation with the glutathione precursor N-acetylcysteine (NAC). We describe an infant with genetically confirmed transaldolase deficiency with multisystem involvement, including liver enlargement and markedly elevated alpha fetoprotein. Acetaminophen was strictly avoided. Treatment with oral NAC over a 6-month period was well tolerated and was associated with a sustained normalization of alpha fetoprotein levels and stable clinical course. The clinical significance of normalized serum alpha fetoprotein in this patient is not certain, although it may reflect decreased hepatocyte injury and reduced hepatocarcinogenesis as has been suggested in the mouse disease model. NAC supplementation may provide benefit in humans with transaldolase deficiency. Longer follow-up and data on the response of additional patients with transaldolase deficiency to NAC supplementation will be required to further evaluate efficacy and optimize dosing.

13.
Eur J Hum Genet ; 24(10): 1436-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27004616

RESUMO

Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.


Assuntos
Proteínas de Transporte/genética , Genótipo , Hidrocefalia/genética , Proteínas de Membrana/genética , Nefrose/genética , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Citoesqueleto , Feminino , Humanos , Hidrocefalia/diagnóstico , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Nefrose/diagnóstico , Linhagem , Proteínas/genética , Síndrome
14.
J Child Neurol ; 29(5): 677-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24092895

RESUMO

Anti-glutamic acid decarboxylase directed antibodies are a rare cause of autoimmune limbic encephalitis that is relatively resistant to immunotherapy. Here we report a 15-year-old boy with nonparaneoplastic, anti-glutamic acid decarboxylase limbic encephalitis presenting with subacute headache, memory disturbance, psychiatric symptoms, and seizures. At onset, his memory disturbance manifested as transient global amnesia-like episodes. Clinical remission was achieved with rituximab, intravenous immunoglobulin, and corticosteroids.


Assuntos
Anticorpos/sangue , Doenças Autoimunes/sangue , Glutamato Descarboxilase/imunologia , Encefalite Límbica/sangue , Adolescente , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Eletroencefalografia , Humanos , Encefalite Límbica/imunologia , Encefalite Límbica/fisiopatologia , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA