Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biomed Eng ; 52(5): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884210

RESUMO

The study aims to enhance the standard of medical care for individuals working in the electric power industry who are exposed to industrial frequency electromagnetic fields and other relevant risk factors. This enhancement is sought through the integration of fuzzy mathematical models with contemporary information and intellectual technologies. The study addresses the challenges of forecasting and diagnosing illnesses within a specific demographic characterized by a combination of poorly formalized issues with interconnected conditions. To tackle this complexity, a methodological framework was developed for synthesizing hybrid fuzzy decision rules. This approach combines clinical expertise with artificial intelligence methodologies to promote innovative problem-solving strategies. Additionally, the researchers devised an original method to evaluate the body's protective capacity, which was integrated into these decision rules to enhance the precision and efficacy of medical decision-making processes. The research findings indicate that industrial frequency electromagnetic fields contribute to illnesses of societal significance. Additionally, it highlights that these effects are worsened by other risk factors such as adverse microclimates, noise, vibration, chemical exposure, and psychological stress. Diseases of the neurological, immunological, cardiovascular, genitourinary, respiratory, and digestive systems are caused by these variables in conjunction with unique physical traits. The development of mathematical models in this study makes it possible to detect and diagnose disorders in workers exposed to electromagnetic fields early on, especially those pertaining to the autonomic nervous system and heart rhythm regulation. The results can be used in clinical practice to treat personnel in the electric power industry since expert evaluation and modeling showed high confidence levels in decision-making accuracy.


Assuntos
Campos Eletromagnéticos , Lógica Fuzzy , Doenças do Sistema Nervoso , Humanos , Campos Eletromagnéticos/efeitos adversos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Bioengenharia , Exposição Ocupacional/efeitos adversos
2.
Crit Rev Biomed Eng ; 52(1): 1-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37938181

RESUMO

Malignant tumors of the pancreas are the fourth leading cause of cancer-related deaths. This is mainly because they are often diagnosed at a late stage. One of the challenges in diagnosing focal lesions in the pancreas is the difficulty in distinguishing them from other conditions due to the unique location and anatomy of the organ, as well as the similarity in their ultrasound characteristics. One of the most sensitive imaging modalities of the pancreas is endoscopic ultrasonography. However, clinicians recognize that EUS is a difficult and highly operator-dependent method, while its results are highly dependent on the experience of the investigator. Hybrid technologies based on artificial intelligence methods can improve the accuracy and objectify the results of endosonographic diagnostics. Endoscopic ultrasonography was performed on 272 patients with focal lesions of the pancreatobiliary zone, who had been treated in the surgical section of the Kursk Regional Clinical Hospital in 2014-2023. The study utilized an Olympus EVIS EXERA II video information endoscopic system, along with an EU-ME1 ultrasound unit equipped with GF UM160 and GF UC140P-AL5 echo endoscopes. Out of the focal formations in the pancreatobiliary zone, pancreatic cancer was detected in 109 patients, accounting for 40.1% of the cases. Additionally, 40 patients (14.7%) were diagnosed with local forms of chronic pancreatitis. The reference sonograms displayed distinguishable focal pancreatic pathologies, leading to the development of hybrid fuzzy mathematical decision-making rules at the South-West State University in Kursk, Russian Federation. This research resulted in the creation of a fuzzy hybrid model for the differential diagnosis of chronic focal pancreatitis and pancreatic cancer. Endoscopic ultrasonography, combined with hybrid fuzzy logic methodology, has made it possible to create a model for differentiating between chronic focal pancreatitis and pancreatic ductal adenocarcinoma. Statistical testing on control samples has shown that the diagnostic model, based on reference endosonograms of the echographic texture of pancreatic focal pathology, has a confidence level of 0.6 for the desired diagnosis. By incorporating additional information about the contours of focal formations obtained through endosonography, the reliability of the diagnosis can be increased to 0.9. This level of reliability is considered acceptable in clinical practice and allows for the use of the developed model, even with data that is not well-structured.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Humanos , Diagnóstico Diferencial , Inteligência Artificial , Reprodutibilidade dos Testes , Pâncreas , Ultrassonografia , Neoplasias Pancreáticas/diagnóstico por imagem , Lógica Fuzzy , Pancreatite/diagnóstico por imagem
3.
Crit Rev Biomed Eng ; 51(3): 59-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560879

RESUMO

One of the key echographic signs of focal pathology of the pancreas is the presence of formation contours and their nature. Endoscopic ultrasonography has a unique ability to visualize the echographic texture of the pancreatic parenchyma, and also allows you to assess in detail the boundaries and nature of the contours of the tumor formations of the organ due to the proximity of the ultrasound sensor. However, the differential diagnosis of focal pancreatic lesions remains a difficult clinical task due to the similarity of their echosemiotics. One of the ways to objectify and improve the accuracy of ultrasound data is the use of artificial intelligence methods for interpreting images. Improving the quality of differential diagnosis of focal pathology of the pancreas according to endoscopic ultrasonography based on the analysis of the nature of the contours of focal formations using fuzzy mathematical models.


Assuntos
Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Endossonografia , Diagnóstico Diferencial , Inteligência Artificial , Pancreatite Crônica/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA