Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(15): 7617-26, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26172528

RESUMO

The two MeCN ligands in [Ru(2-C6H4-2'-Py-κC,N)(Phen, trans-C)(MeCN)2]PF6 (1), both trans to a sp(2) hybridized N atom, cannot be substituted by any other ligand. In contrast, the isomerized derivative [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(MeCN)2]PF6 (2), in which one MeCN ligand is now trans to the C atom of the phenyl ring orthometalated to Ru, leads to fast and quantitative substitution reactions with several monodentate ligands. With PPh3, 2 affords [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(PPh3)(MeCN)]PF6 (3), in which PPh3 is trans to the C σ bound to Ru. Compound 3 is not kinetically stable, because, under thermodynamic control, it leads to 4, in which the PPh3 is trans to a N atom of the Phen ligand. Dimethylsulfoxide (DMSO) can also substitute a MeCN ligand in 2, leading to 5, in which DMSO is coordinated to Ru via its S atom trans to the N atom of the Phen ligand, the isomer under thermodynamic control being the only compound observed. We also found evidence for the fast to very fast substitution of MeCN in 2 by water or a chloride anion by studying the electronic spectra of 2 in the presence of water or NBu4Cl, respectively. An isomerization related to that observed between 3 and 4 is also found for the known monophosphine derivative [Ru(2-C6H4-2'-Py-κC,N)(PPh3, trans-C)(MeCN)3]PF6 (10), in which the PPh3 is located trans to the C of the cyclometalated 2-phenylpyridine, since, upon treatment by refluxing MeCN, it leads to its isomer 11, [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(MeCN)3]PF6. Further substitutions are also observed on 11, whereby N^N chelates (N^N = 2,2'-bipyridine and phenanthroline) substitute two MeCN ligands, affording [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(N^N)(MeCN)]PF6 (12a and 12b). Altogether, the behavior of the obtained complexes by ligand substitution reactions can be rationalized by an antisymbiotic effect on the Ru center, trans to the C atom of the cyclometalated unit, leading to compounds having the least nucleophilic ligand trans to C whenever an isomerization, involving either a monodentate or a bidentate ligand, is possible.


Assuntos
Antineoplásicos/química , Carbono/química , Compostos Organometálicos/química , Fosfinas/química , Rutênio/química , Dimetil Sulfóxido/química , Ligantes , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Água/química
2.
J Med Case Rep ; 6: 426, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23273314

RESUMO

INTRODUCTION: Acinetobacter baumannii is a Gram-negative bacteria and a significant nosocomial pathogen in hospitals. Multidrug-resistant A. baumannii have emerged as a cause of nosocomial infections in critically ill patients. This microorganism has the ability to produce biofilms on different surfaces, which could explain their ability to persist in clinical environments and their role in device-related infections. CASE PRESENTATION: We present the case of a 33-year-old Hispanic man with local invasive retroperitoneal leiomyosarcoma and right kidney exclusion along with femoral venous thrombosis, who was admitted for tumor resection. He had been receiving multiple nephrotoxic antibiotics for a long time (including tigecycline and colistimethate sodium) and had a persistent urinary infection related to multidrug-resistant A. baumannii (with susceptibility to colistimethate). Colistimethate was administered through a three-lumen urinary device for continuous urinary irrigation over seven days. Our patient did not refer to any adverse effects. A urine culture control taken at the end of the irrigation and another taken 10 days later were negative. CONCLUSION: Colistimethate sodium and other antimicrobials infused by urinary irrigation can be a good option in patients in whom parenteral administration could be toxic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA