Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 29(3): 331-338, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38717473

RESUMO

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Assuntos
Antineoplásicos , Elementos da Série dos Lantanídeos , Ácidos Picolínicos , Humanos , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Masculino , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares , Células HL-60 , Cristalografia por Raios X , Estrutura Molecular , Linhagem Celular Tumoral , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Dalton Trans ; 53(21): 8988-9000, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38721696

RESUMO

A new family of six complexes based on 5-nitropicolinic acid (5-npic) and transition metals has been obtained: [M(5-npic)2]n (MII = Mn (1) and Cd (2)), [Cu(5-npic)2]n (3), and [M(5-npic)2(H2O)2] (MII = Co (4), Ni (5), and Zn (6)), which display 1D, 2D, and mononuclear structures, respectively, thanks to different coordination modes of 5-npic. After their physicochemical characterization by single-crystal X-ray diffraction (SCXRD), elemental analyses (EA), and spectroscopic techniques, quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) were performed to further study the luminescence properties of compounds 2 and 6. The potential anticancer activity of all complexes was tested against three tumor cell lines, B16-F10, HT29, and HepG2, which are models widely used for studying melanoma, colon cancer, and liver cancer, respectively. The best results were found for compounds 2 and 4 against B16-F10 (IC50 = 26.94 and 45.10 µg mL-1, respectively). In addition, anti-inflammatory studies using RAW 264.7 cells exhibited promising activity for 2, 3, and 6 (IC50 NO = 5.38, 24.10, and 17.63 µg mL-1, respectively). This multidisciplinary study points to complex 2, based on CdII, as a promising anticancer and anti-inflammatory material.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ácidos Picolínicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Camundongos , Animais , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Teoria da Densidade Funcional , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Desenho de Fármacos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Modelos Moleculares , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos
3.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655651

RESUMO

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Assuntos
Ácido Clorogênico , Inseticidas , Estruturas Metalorgânicas , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Animais , Tenebrio/química , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos
4.
J Biol Inorg Chem ; 29(1): 139-158, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175299

RESUMO

The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/farmacologia , Cobre/química , Antineoplásicos/química , Fenantrolinas/química , Vanádio/farmacologia , DNA/química , Células MCF-7 , Ânions , Fenômenos Magnéticos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
5.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630879

RESUMO

Metal-organic frameworks (MOFs) are highly versatile materials. Here, two novel MOFs, branded as IEF-23 and IEF-24 and based on an antibacterial tricarboxylate linker and zinc or copper cations, and holding antibacterial properties, are presented. The materials were synthesized by the solvothermal route and fully characterized. The antibacterial activity of IEF-23 and IEF-24 was investigated against Staphylococcus epidermidis and Escherichia coli via the agar diffusion method. These bacteria are some of the most broadly propagated pathogens and are more prone to the development of antibacterial resistance. As such, they represent an archetype to evaluate the efficiency of novel antibacterial treatments. MOFs were active against both strains, exhibiting higher activity against Staphylococcus epidermidis. Thus, the potential of the developed MOFs as antibacterial agents was proved.

6.
Dalton Trans ; 51(37): 14165-14181, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36053151

RESUMO

Hydrazones and their metal derivatives are very important compounds in medicinal chemistry due to their reported variety of biological activities, such as antibacterial, antifungal and anticancer action. Five hydrazone-pyrazolone ligands H2Ln (n = 1-5) were prepared and fully characterized and their tautomerism was investigated in the solid state and solution. Five zinc(II) complexes 1-5 of composition [Zn(HLn)2] (n = 1 and 2), [Zn(HLn)2(H2O)2] (n = 3 and 5) and [Zn(HL4)2]n were synthesized and characterized by elemental analysis, IR, 1H, 19F, 13C, and 15N NMR spectroscopy, and ESI mass spectrometry. In addition, the structures of two ligands and three complexes were determined by single-crystal X-ray diffraction. The ligands H2L2 and H2L4 exist both in the NH,NH tautomeric form. Complexes 1 and 2 are mononuclear compounds, while complex 4 is a one-dimensional coordination compound. Density functional theory (DFT) calculations were carried out on proligands, their anions and all zinc complexes, confirming the experimental results, supporting IR and NMR assignments and giving proofs of the mononuclear diaqua structure of complexes 3 and 5. The antibacterial activity of the free ligands and the Zn(II) complexes was established against Escherichia coli and Staphylococcus aureus, and a strong efficiency has been found for Zn(II) complexes, particularly for the polynuclear 4 and the mononuclear diaqua complex 5, the latter containing a ligand with aliphatic and fluorinated substituents able to compromise the permeability of and disrupt the bacterial cell membrane.


Assuntos
Complexos de Coordenação , Pirazolonas , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Escherichia coli , Hidrazonas/química , Hidrazonas/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazolonas/química , Pirazolonas/farmacologia , Zinco/química
7.
Inorg Chem ; 61(20): 7729-7745, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35522899

RESUMO

The synthesis, full characterization, photochemical properties, and cytotoxic activity toward cisplatin-resistant cancer cell lines of new semisquaraine-type Pt(II) complexes are presented. The synthesis of eight semisquaraine-type ligands has been carried out by means of an innovative, straightforward methodology. A thorough structural NMR and X-ray diffraction analysis of the new ligands and complexes has been done. Density functional theory calculations have allowed to assign the trans configuration of the platinum center. Through the structural modification of the ligands, it has been possible to synthesize some complexes, which have turned out to be photoactive at wavelengths that allow their activation in cell cultures and, importantly, two of them show remarkable solubility in biological media. Photodegradation processes have been studied in depth, including the structural identification of photoproducts, thus justifying the changes observed after irradiation. From biological assessment, complexes C7 and C8 have been demonstrated to behave as promising photoactivatable compounds in the assayed cancer cell lines. Upon photoactivation, both complexes are capable of inducing a higher cytotoxic effect on the tested cells compared with nonphotoactivated compounds. Among the observed results, it is remarkable to note that C7 showed a PI > 50 in HeLa cells, and C8 showed a PI > 40 in A2780 cells, being also effective over cisplatin-resistant A2780cis cells (PI = 7 and PI = 4, respectively). The mechanism of action of these complexes has been studied, revealing that these photoactivated platinum complexes would actually present a combined mode of action, a therapeutically potential advantage.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Células HeLa , Humanos , Ligantes , Platina/química , Platina/farmacologia
8.
Front Chem ; 10: 830511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252118

RESUMO

The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6-31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds' main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate's anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.

9.
Pharmaceutics ; 13(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34683852

RESUMO

Despite some limitations such as long-term side effects or the potential presence of intrinsic or acquired resistance, platinum compounds are key therapeutic components for the treatment of several solid tumors. To overcome these limitations, maintaining the same efficacy, organometallic ruthenium(II) compounds have been proposed as a viable alternative to platinum agents as they have a more favorable toxicity profile and represent an ideal template for both, high-throughput and rational drug design. To support the preclinical development of bis-phoshino-amine ruthenium compounds in the treatment of breast cancer, we carried out chemical modifications in the structure of these derivatives with the aim of designing less toxic and more efficient therapeutic agents. We report new bis-phoshino-amine ligands and the synthesis of their ruthenium counterparts. The novel ligands and compounds were fully characterized, water stability analyzed, and their in vitro cytotoxicity against a panel of tumor cell lines representative of different breast cancer subtypes was evaluated. The mechanism of action of the lead compound of the series was explored. In vivo toxicity was also assessed. The results obtained in this article might pave the way for the clinical development of these compounds in breast cancer therapy.

10.
Metallomics ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34114030

RESUMO

New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Ouro/química , Pontos de Checagem da Fase M do Ciclo Celular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Modelos Moleculares
11.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064702

RESUMO

A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL-1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Diclofenaco/farmacologia , Edema/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Apoptose , Ciclo Celular , Proliferação de Células , Diclofenaco/química , Humanos , Estrutura Molecular , Ratos , Células Tumorais Cultivadas
12.
J Inorg Biochem ; 215: 111308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33257004

RESUMO

A new family of mononuclear coordination compounds has been synthetized and characterized: [M(3-ind)2(H2O)2] (M = Co (1), Ni (2), Zn (3), Fe (4), Mn (5); 3-ind = indazole-3-carboxylate). These materials are mononuclear coordination compounds that possess strong hydrogen bond interactions. The anti-inflammatory effects of these compounds were assayed in lipopolysaccharide activated RAW 264.7 macrophages by inhibition of NO production. Moreover, the cytotoxicity of the complexes and the ligand in RAW 264.7 cells were determined for the first time. The most significant results were obtained for the compounds 4 and 5 reaching values of NO inhibition close to 80% at 48 h, and above to 90% at 72 h of treatment. The highest inhibitory effects on NO production were showed at the range 7-23 µg/mL for compounds 4 and 5. As a consequence, compounds 4 and 5 could be potential drugs due to the interesting anti-inflammatory properties showed. The anti-cancer potential of these compounds has been also tested against different tumor cell lines. The cytotoxicity of the ligand and of compounds 2 and 3 were assayed in three cell lines: HT29, colon cancer cells, Hep-G2, hepatoma cells and B16-F10 melanoma cells. The best results have been achieved with compound 2 in HepG2 and B16-F10 cell lines, being between 1.5 and 2 times more effective that the ligand in HepG2 cells, and B16-F10 cells. All in all, indazole-3-carboxylic acid is a promising ligand for the formation of coordination compounds with biochemical properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Indazóis/química , Indazóis/farmacologia , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Cátions Bivalentes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HT29 , Células Hep G2 , Humanos , Ligação de Hidrogênio , Íons/química , Ligantes , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7
13.
Pharmaceutics ; 12(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503320

RESUMO

The synthesis, characterization and cytotoxic activity against different cancer cell lines of various mesoporous silica-based materials containing folate targeting moieties and a cytotoxic fragment based on a triphenyltin(IV) derivative have been studied. Two different mesoporous nanostructured silica systems have been used: firstly, micronic silica particles of the MSU-2 type and, secondly, mesoporous silica nanoparticles (MSNs) of about 80 nm. Both series of materials have been characterized by different methods, such as powder X-ray diffraction, X-ray fluorescence, absorption spectroscopy and microscopy. In addition, these systems have been tested against four different cancer cell lines, namely, OVCAR-3, DLD-1, A2780 and A431, in order to observe if the size of the silica-based systems and the quantity of incorporated folic acid influence their cytotoxic action. The results show that the materials are more active when the quantity of folic acid is higher, especially in those cells that overexpress folate receptors such as OVCAR-3 and DLD-1. In addition, the study of the potential modulation of the soluble folate receptor alpha (FOLR1) by treatment with the synthesized materials has been carried out using OVCAR-3, DLD-1, A2780 and A431 tumour cell lines. The results show that a relatively high concentration of folic acid functionalization of the nanostructured silica together with the incorporation of the cytotoxic tin fragment leads to an increase in the quantity of the soluble FOLR1 secreted by the tumour cells. In addition, the studies reported here show that this increase of the soluble FOLR1 occurs presumably by cutting the glycosyl-phosphatidylinositol anchor of membrane FR-α and by the release of intracellular FR-α. This study validates the potential use of a combination of mesoporous silica materials co-functionalized with folate targeting molecules and an organotin(IV) drug as a strategy for the therapeutic treatment of several cancer cells overexpressing folate receptors.

14.
J Inorg Biochem ; 207: 111051, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32371293

RESUMO

Five new coordination polymers (CPs) constructed of aminopyridine-2-carboxylate (ampy) ligand have been synthesized and fully characterized. Three of them correspond to metal-organic chains built from the coordination of ampy to sodium and lanthanides with formulae [MNa(ampy)4]n (M = terbium (2), erbium (1) and ytterbium (3)) resembling a previously reported dysprosium material which shows anticancer activity. On another level, the reaction of Hampy with cobalt and copper ions ({[CoK(ampy)3(H2O)3](H2O)3}n (4) and [Cu(ampy)2]n (5)) lead to CPs with variable dimensionalities, which gives the opportunity of analyzing the structural properties of this new family. Lanthanide materials display solid state intense photoluminescent emissions in both the visible and near-infrared region and exhibit slow relaxation of magnetization with frequency dependence of the out-of-phase susceptibility. More interestingly, in our search for multifunctional materials, we have carried out antitumor measurements of these compounds. These multidisciplinary studies of metal complexes open up the possibility for further exploring the applications in the fields of metal-based drugs.


Assuntos
Aminopiridinas/química , Antineoplásicos/química , Ácidos Carboxílicos/química , Estruturas Metalorgânicas/química , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X/métodos , Células HT29 , Células Hep G2 , Humanos , Elementos da Série dos Lantanídeos/química , Ligantes , Luminescência , Magnetismo , Estruturas Metalorgânicas/farmacologia , Camundongos , Modelos Moleculares , Polímeros/química
15.
J Inorg Biochem ; 208: 111098, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454248

RESUMO

We report on the formation of two novel multifunctional isomorphous (4,4) square-grid 2D coordination polymers based on 1H-indazole-5-carboxylic acid. To the best of our knowledge, these complexes are the first examples of 2D-coordination polymers constructed with this novel ligand. We have analysed in detail the structural, magnetic and anti-parasitic properties of the resulting materials. In addition, the capability of inhibiting nitric oxide production from macrophage cells has been measured and was used as an indirect measure of the anti-inflammatory response. Finally, the photocatalytic activity was measured with a model pollutant, i.e. vanillic acid (phenolic compound), with the aim of further increasing the functionalities and applicability of the compounds.


Assuntos
Anti-Inflamatórios , Antiprotozoários , Complexos de Coordenação , Citotoxinas , Indazóis , Leishmania/crescimento & desenvolvimento , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Indazóis/química , Indazóis/farmacologia , Camundongos , Células RAW 264.7
16.
Dalton Trans ; 49(6): 1915-1927, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31971194

RESUMO

New thiolate gold(i) complexes with P(NMe2)3 (HMPT) as a phosphane group [Au(SR)(HMPT)] (SR = Spy, Spyrim, SMe2pyrim, Sbenzothiazole, Sthiazoline, Sbenzimidazole and 2-thiouracil) have been synthesized. All of them have been characterized, including X-ray studies of complexes with SMe2pyrim, Sbenzothiazole and 2-thiouracil moieties. In addition, their potential application as anticancer drugs has been analyzed by determining their pharmacokinetic activities (water solubility, cell permeability and BSA transport protein affinity). Based on the good results of these experiments, we carried out the studies of cell viability with our compounds on different cell lines (A2780, A2780R and Caco-2/TC7 cells), showing higher cytotoxic activity than cisplatin in all cases. Besides, two of the synthesized complexes with Sbenzimidazole and 2-thiouracil groups exhibit specific selectivity for cancerous Caco-2 cells and are considered as potential candidates for anticancer drugs. These complexes were able to induce a strong inhibition of the thioredoxin reductase (TrxR) protein and oxidative damage in membrane lipids. Additional studies in primary cultures of mouse colon tumors showed that these two complexes are proapoptotic upon exposure to phosphatidylserine. Based on our results, we conclude that two of our thiolate gold(i) complexes are good and effective candidates for use in chemotherapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Feminino , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Células Tumorais Cultivadas
17.
Inorg Chem ; 58(22): 15536-15551, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697068

RESUMO

New alkynylgold(I) with P(NMe2)3 (HMPT) phosphane complexes, [Au(C≡C-R)(HMPT)] (R= 4-Ph, 4-MePh, 4-OMe, 4-Br, 4-Cl, 2-py, and 3-py) have been synthesized and characterized, including X-ray studies of complexes with R= 4-OMe and 4-Br; additionally, their physicochemical properties and anticancer activity have been tested. Due to the great water solubility of the HMPT phosphane, all the complexes exhibit an optimal balance of hydrophilicity/lipophilicity. Also, all of these complexes are quite stable in physiological conditions and interact well enough with the transport protein BSA. All complexes exhibit a higher anticancer activity against Caco-2 cells than cisplatin, and some of them do not present cytotoxic activity against enterocyte-like differentiated cells. The selective complexes are proapoptotic drugs by the exposure of phosphatidylserine, results that are also confirmed in primary cultures from mouse colon tumors. Complexes with a halogen unit also arrest the cell cycle in G2/M phase. It is thought that maybe these apoptosis processes are promoted by the observed oxidative damage in the membrane lipids, as a consequence of the inhibition of the thioredoxin reductase enzyme. Based on our results, we conclude that five of our complexes are good candidates to be used in chemotherapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Compostos Organoáuricos/química , Compostos Organoáuricos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Células CACO-2 , Cristalografia por Raios X , Feminino , Humanos , Camundongos Endogâmicos ICR , Modelos Moleculares , Fosfinas/química , Fosfinas/uso terapêutico
18.
Dalton Trans ; 47(21): 7272-7281, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29766169

RESUMO

The reaction of 1-((2-(pyridin-2-yl)ethyl)amino)anthraquinone with either Fe(HMDS)2 or Li(HMDS)/FeCl2 allowed the preparation of a new anthraquinoid-based iron(ii) complex active in the hydrosilylations of carbonyls. The new complex Fe(2)2 was characterized by single-crystal X-ray diffraction, infrared spectroscopy, NMR, and high resolution mass spectrometry (electrospray ionization). Superconducting quantum interference device (SQUID) magnetometry established no spin crossover behavior with an S = 2 state at room temperature. This complex was determined to be an effective catalyst for the hydrosilylation of aldehydes and ketones, exhibiting turnover frequencies of up to 63 min-1 with a broad functional group tolerance by just using 0.25 mol% of the catalyst at room temperature, and even under solvent-free conditions. The aldehyde hydrosilylation makes it one of the most efficient first-row transition metal catalysts for this transformation. Kinetic studies have proven first-order dependences with respect to acetophenone and Ph2SiH2 and a fractional order in the case of the catalyst.

19.
Materials (Basel) ; 11(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385103

RESUMO

A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti-Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells' metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.

20.
Inorg Chem ; 56(6): 3149-3152, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28263575

RESUMO

A new cadmium/6-aminonicotinate-based coordination polymer (CP) with an unprecedented multicolored and long-lasting emission is reported. This material shows a blue fluorescence which rapidly turns to green persistent phosphorescence with a lifetime of nearly 1 s. Time-dependent density functional theory calculations revealed that electronic transitions arising from both first excited singlet and triplet states involving ligand-centered and ligand-to-metal charge-transfer mechanisms are responsible for such behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA