Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294077

RESUMO

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Assuntos
COVID-19 , Metiltransferases , Humanos , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , RNA Viral/genética , Exorribonucleases
2.
J Biol Chem ; 291(28): 14430-46, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226617

RESUMO

Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2ß2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2ß2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2ß2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.


Assuntos
Glicina-tRNA Ligase/química , Filogenia , Bactérias/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
3.
J Mol Biol ; 425(20): 3888-906, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23727144

RESUMO

The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing at the ribosome A-site, and prevents frameshifting during translation. By mass spectrometry of affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that the complete modification at the wobble position 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). The crystal structure of E. coli glutaminyl-tRNA synthetase (GlnRS) bound to native tRNA1(Gln) and ATP demonstrates that cmnm(5)s(2)U34 improves the order of a previously unobserved 11-amino-acid surface loop in the distal ß-barrel domain of the enzyme and imparts other local rearrangements of nearby amino acids that create a binding pocket for the 2-thio moiety. Together with previously solved structures, these observations explain the degenerate recognition of C34 and modified U34 by GlnRS. Comparative pre-steady-state aminoacylation kinetics of native tRNA1(Gln), synthetic tRNA1(Gln) containing s(2)U34 as sole modification, and unmodified wild-type and mutant tRNA1(Gln) and tRNA2(Gln) transcripts demonstrates that the exocyclic sulfur moiety improves tRNA binding affinity to GlnRS 10-fold compared with the unmodified transcript and that an additional fourfold improvement arises from the presence of the cmnm(5) moiety. Measurements of Gln-tRNA(Gln) interactions at the ribosome A-site show that the s(2)U modification enhances binding affinity to the glutamine codons CAA and CAG and increases the rate of GTP hydrolysis by E. coli EF-Tu by fivefold.


Assuntos
Anticódon/genética , Biossíntese de Proteínas/fisiologia , RNA de Transferência/química , RNA de Transferência/genética , Tiouridina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/química , Sequência de Bases , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , Ribossomos/metabolismo , Tiouridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA