Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 66: 102869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37677999

RESUMO

The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.


Assuntos
Catarata , Proteoma , Humanos , Animais , Camundongos , Glutationa , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas Mutantes , Oxirredução , Taurina , Catarata/genética
2.
Mol Cell Oncol ; 7(6): 1809958, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-33235912

RESUMO

Small extracellular vesicles released by fibroblasts from young human donors diminish lipid peroxidation in senescent cells and in different old mice organs due to their enrichment in Glutathione-S-transferase Mu lipid antioxidant activity.

3.
Aging Cell ; 19(11): e13257, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33146912

RESUMO

Diabetes and metabolic syndrome are associated with the typical American high glycemia diet and result in accumulation of high levels of advanced glycation end products (AGEs), particularly upon aging. AGEs form when sugars or their metabolites react with proteins. Associated with a myriad of age-related diseases, AGEs accumulate in many tissues and are cytotoxic. To date, efforts to limit glycation pharmacologically have failed in human trials. Thus, it is crucial to identify systems that remove AGEs, but such research is scanty. Here, we determined if and how AGEs might be cleared by autophagy. Our in vivo mouse and C. elegans models, in which we altered proteolysis or glycative burden, as well as experiments in five types of cells, revealed more than six criteria indicating that p62-dependent autophagy is a conserved pathway that plays a critical role in the removal of AGEs. Activation of autophagic removal of AGEs requires p62, and blocking this pathway results in accumulation of AGEs and compromised viability. Deficiency of p62 accelerates accumulation of AGEs in soluble and insoluble fractions. p62 itself is subject to glycative inactivation and accumulates as high mass species. Accumulation of p62 in retinal pigment epithelium is reversed by switching to a lower glycemia diet. Since diminution of glycative damage is associated with reduced risk for age-related diseases, including age-related macular degeneration, cardiovascular disease, diabetes, Alzheimer's, and Parkinson's, discovery of methods to limit AGEs or enhance p62-dependent autophagy offers novel potential therapeutic targets to treat AGEs-related pathologies.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Lisossomos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
4.
Cell Death Dis ; 10(4): 318, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962418

RESUMO

Senescent cells accumulate in several tissues during ageing and contribute to several pathological processes such as ageing and cancer. Senescence induction is a complex process not well defined yet and is characterized by a series of molecular changes acquired after an initial growth arrest. We found that fatty acid synthase (FASN) levels increase during the induction of senescence in mouse hepatic stellate cells and human primary fibroblasts. Importantly, we also observed a significant increase in FASN levels during ageing in mouse liver tissues. To probe the central role of FASN in senescence induction, we used a small-molecule inhibitor of FASN activity, C75. We found that C75 treatment prevented the induction of senescence in mouse and human senescent cells. Importantly, C75 also reduced the expression of the signature SASP factors interleukin 1α (IL-1α), IL-1ß and IL-6, and suppressed the secretion of small extracellular vesicles. These findings were confirmed using a shRNA targeting FASN. In addition, we find that FASN inhibition induces metabolic changes in senescent cells. Our work underscores the importance of C75 as a pharmacological inhibitor for reducing the impact of senescent cell accumulation.


Assuntos
Senescência Celular , Ácido Graxo Sintase Tipo I/metabolismo , Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/genética , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Feminino , Fibroblastos/enzimologia , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/fisiologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA