Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
ACS Synth Biol ; 13(6): 1727-1736, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38787640

RESUMO

Curcumin, a natural polyphenol derived from turmeric, has attracted immense interest due to its diverse pharmacological properties. Traditional extraction methods from Curcuma longa plants present limitations in meeting the growing demand for this bioactive compound, giving significance to its production by genetically modified microorganisms. Herein, we have developed an engineered Saccharomyces cerevisiae to produce curcumin from glucose. A pathway composed of the 4-hydroxyphenylacetate 3-monooxygenase oxygenase complex from Pseudomonas aeruginosa and Salmonella enterica, caffeic acid O-methyltransferase from Arabidopsis thaliana, feruloyl-CoA synthetase from Pseudomonas paucimobilis, and diketide-CoA synthase and curcumin synthase from C. longa was introduced in a p-coumaric acid overproducing S. cerevisiae strain. This strain produced 240.1 ± 15.1 µg/L of curcumin. Following optimization of phenylpropanoids conversion, a strain capable of producing 4.2 ± 0.6 mg/L was obtained. This study reports for the first time the successful de novo production of curcumin in S. cerevisiae.


Assuntos
Ácidos Cumáricos , Curcumina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Curcumina/metabolismo , Ácidos Cumáricos/metabolismo , Engenharia Metabólica/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Glucose/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo
2.
Carbohydr Polym ; 334: 122031, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553230

RESUMO

The efficacy of cancer therapies is significantly compromised by the immunosuppressive tumor milieu. Herein, we introduce a previously unidentified therapeutic strategy that harnesses the synergistic potential of chitosan-coated bacterial vesicles and a targeted chemotherapeutic agent to activate dendritic cells, thereby reshaping the immunosuppressive milieu for enhanced cancer therapy. Our study focuses on the protein-mediated modification of bacterium-derived minicells with chitosan molecules, facilitating the precise delivery of Doxorubicin to tumor sites guided by folate-mediated homing cues. These engineered minicells demonstrate remarkable specificity in targeting lung carcinomas, triggering immunogenic cell death and releasing tumor antigens and damage-associated molecular patterns, including calreticulin and high mobility group box 1. Additionally, the chitosan coating, coupled with bacterial DNA from the minicells, initiates the generation of reactive oxygen species and mitochondrial DNA release. These orchestrated events culminate in dendritic cell maturation via activation of the stimulator of interferon genes signaling pathway, resulting in the recruitment of CD4+ and CD8+ cytotoxic T cells and the secretion of interferon-ß, interferon-γ, and interleukin-12. Consequently, this integrated approach disrupts the immunosuppressive tumor microenvironment, impeding tumor progression. By leveraging bacterial vesicles as potent dendritic cell activators, our strategy presents a promising paradigm for synergistic cancer treatment, seamlessly integrating chemotherapy and immunotherapy.


Assuntos
Quitosana , Neoplasias Pulmonares , Neoplasias , Humanos , Quitosana/uso terapêutico , Imunomodulação , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Células Dendríticas , Microambiente Tumoral
3.
Biomater Adv ; 154: 213643, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778291

RESUMO

Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.


Assuntos
Exossomos , Neoplasias de Mama Triplo Negativas , Humanos , Proliferação de Células/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Exossomos/genética , Exossomos/metabolismo
5.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559189

RESUMO

Calcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaxMn1-xFe2O4 (x = 0, 0.2, 1), were synthesized by the sol-gel method, followed by calcination, and then characterized regarding their crystalline structure (by X-ray diffraction, XRD), size and shape (by Transmission Electron Microscopy, TEM), hydrodynamic size and zeta potential (by Dynamic Light Scattering, DLS), and heating efficiency (measuring the Specific Absorption Rate, SAR, and Intrinsic Loss Power, ILP) under an alternating magnetic field. The obtained NPs showed a particle size within the range of 10 nm to 20 nm (by TEM) with a spherical or cubic shape. Ca0.2Mn0.8Fe2O4 NPs exhibited the highest SAR value of 36.3 W/g at the lowest field frequency tested, and achieved a temperature variation of ~7 °C in 120 s, meaning that these NPs are suitable magnetic hyperthermia agents. In vitro cellular internalization and cytotoxicity experiments, performed using the human cell line HEK 293T, confirmed cytocompatibility over 0-250 µg/mL range and successful internalization after 24 h. Based on these studies, our data suggest that these manganese-calcium ferrite NPs have potential for MH application and further use in in vivo systems.

6.
Int J Biol Macromol ; 220: 1589-1604, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116593

RESUMO

The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.


Assuntos
Antineoplásicos , Neoplasias , Adenosina Trifosfatases/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Glicólise , Ferro/química , Lactoferrina/química , Microdomínios da Membrana/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bombas de Próton/metabolismo
7.
ACS Appl Mater Interfaces ; 14(32): 36411-36424, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917371

RESUMO

Despite recent preclinical progress with oncolytic bacteria in cancer therapy, dose-limiting toxicity has been a long-standing challenge for clinical application. Genetic and chemical modifications for enhancing the bacterial tumor-targeting ability have been unable to establish a balance between increasing its specificity and effectiveness while decreasing side effects. Herein, we report a simple, highly efficient method for rapidly self-assembling a clinically used lipid on bacterium and for reducing its minimum effective dose and toxicity to normal organs. The resultant bacteria present the ability to reverse-charge between neutral and acidic solutions, thus enabling weak interactions with the negatively charged normal cells, hence increasing their biocompatibility with blood cells and with the immune system. Additionally, the lipid-coated bacteria exhibit a longer blood circulation lifetime and low tissue trapping compared with the wild-type strains. Thereby, the engineered bacteria show enhanced tumor specificity and effectiveness even at low doses. Multiple visualization techniques are used for vividly demonstrating the time course of bacterial circulation in the blood and normal organs after intravenous administration. We believe that these methods for biointerfacial lipid self-assembly and evaluation of bacterial systemic circulation possess vast potential in exquisitely fabricating engineered bacteria for cancer therapy in the future.


Assuntos
Neoplasias , Bactérias , Humanos , Lipídeos , Neoplasias/tratamento farmacológico , Eletricidade Estática
8.
Food Chem ; 391: 133231, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613528

RESUMO

This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â†’ 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.


Assuntos
Antioxidantes , Prebióticos , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
9.
Pharmaceutics ; 14(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631673

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its clinical translation is being hampered by the lack of safe, versatile, and effective nonviral delivery systems. Herein we report on the preparation and application of two cationic liposome−DNA systems (i.e., lipoplexes) for CRISPR/Cas9 gene delivery. For that purpose, two types of cationic lipids are used (DOTAP, monovalent, and MVL5, multivalent with +5e nominal charge), along with three types of helper lipids (DOPC, DOPE, and monoolein (GMO)). We demonstrated that plasmids encoding Cas9 and single-guide RNA (sgRNA), which are typically hard to transfect due to their large size (>9 kb), can be successfully transfected into HEK 293T cells via MVL5-based lipoplexes. In contrast, DOTAP-based lipoplexes resulted in very low transfection rates. MVL5-based lipoplexes presented the ability to escape from lysosomes, which may explain the superior transfection efficiency. Regarding gene editing, MVL5-based lipoplexes achieved promising GFP knockout levels, reaching rates of knockout superior to 35% for charge ratios (+/−) of 10. Despite the knockout efficiency being comparable to that of Lipofectamine 3000® commercial reagent, the non-specific gene knockout is more pronounced in MVL5-based formulations, probably resulting from the considerable cytotoxicity of these formulations. Altogether, these results show that multivalent lipid-based lipoplexes are promising CRISPR/Cas9 plasmid delivery vehicles, which by further optimization and functionalization may become suitable in vivo delivery systems.

10.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590912

RESUMO

Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (µPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Biomarcadores , Biomarcadores Tumorais , Colorimetria , Dispositivos Lab-On-A-Chip , Neoplasias/diagnóstico , Papel , Sistemas Automatizados de Assistência Junto ao Leito
11.
Int J Food Microbiol ; 367: 109588, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245724

RESUMO

Prenylflavonoids are flavonoid-derived compounds characterized by the presence of a lipophilic prenylated side-chain in the flavonoid skeleton. These compounds are present in several food supplements and food products, and have a wide variety of recognized biological activities, namely estrogenic, antioxidant, anti-inflammatory and anticancer. Since these compounds are present in nature in very low amounts, their extraction from plants is not enough to fulfill the current demand, besides being an inefficient and environmentally unfriendly process. For these reasons, the use of microorganisms as microbial cell factories represents an interesting alternative to produce prenylflavonoids in a faster and cheaper way. Saccharomyces cerevisiae has been used as chassis to produce prenylflavonoids. Moreover, Escherichia coli can also emerge as an alternative chassis to produce these compounds. However, there is still a long way before prenylflavonoids can be produced by heterologous organisms with relevant yields and titers. In this review, we highlight the biosynthetic pathways involved in the production of prenylflavonoids. Additionally, we review the advances, challenges and strategies on the heterologous production of these compounds in a competitive way.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Escherichia coli/genética , Flavonoides/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Curr Med Chem ; 29(37): 5850-5880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35209816

RESUMO

An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Humanos , Neoplasias/diagnóstico , Técnica de Seleção de Aptâmeros/métodos
13.
Crit Rev Oncol Hematol ; 172: 103628, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189326

RESUMO

In recent years, various drug nano-delivery platforms have emerged to enhance drug effectiveness in cancer treatment. However, their successful translation to clinics have been hampered by unwanted side effects, as well as associated toxicity. Therefore, there is an imperative need for drug delivery vehicles capable of surpassing cellular barriers and also efficiently transfer therapeutic payloads to tumor cells. Exosomes, a class of small extracellular vesicles naturally released from all cells, have been exploited as a favorable delivery vehicle due to their natural role in intracellular communication and biocompatibility. In this review, information on exosome biogenesis, contents, forms of isolation and their natural functions is discussed, further complemented with the various successful methodologies for therapeutic payloads encapsulation, including distinct loading approaches. In addition, grafting of molecules to improve pharmacokinetics, tumor homing-ligands, as well as stimuli-responsive elements to enhance cell specificity are also debated. In the end, the current status of clinical-grade exosome-based therapies is outlined.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/patologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
14.
Anal Chim Acta ; 1198: 339557, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35190123

RESUMO

This work presents a novel cellulose-based aptasensor for the colorimetric detection of a cancer biomarker, osteopontin (OPN), in point-of-care (PoC) analysis. For this purpose, the cellulose paper was chemically modified with (mercaptopropyl)methyldimetoxisilane to attach the thiolated aptamer, which acts as a biological detection layer. The surface modification was checked by Fourier transform infrared spectroscopy and thermogravimetric analysis. Colorimetric detection was performed using a conventional staining solution, Bradford reagent. The color analysis was performed by evaluating the RGB coordinates provided by the ImageJ program from the photographs taken with a smartphone. Overall, the biosensor shows good sensitivity with a wide linear range (R > 0.998) of 5-1000 ng/mL and a detection limit lower than 5 ng/mL in buffer and commercial human serum solution, after 30 min of incubation. In addition, this aptasensor shows good selectivity to some interfering species such as bovine serum albumin and recombinant OPN. Analytical data obtained from spiked serum samples confirm the accuracy of the method. Importantly, it is a broad-spectrum method that tends to meet the criteria of REASSURED (real-time connectivity, ease of sampling, affordability, specificity, ease of use, speed and robustness, device freedom, and deliverability) for global testing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Celulose , Colorimetria/métodos , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Osteopontina
15.
Biomolecules ; 12(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053267

RESUMO

Lactoferrin (Lf) is a milk-derived protein with well-recognized potential as a therapeutic agent against a wide variety of cancers. This natural protein exhibits health-promoting effects and has several interesting features, including its selectivity towards cancer cells, good tolerability in humans, worldwide availability, and holding a generally recognized as safe (GRAS) status. To prompt the rational clinical application of this promising anticancer compound, previous works aimed to unveil the molecular mechanisms underlying its selective anticancer activity, where plasmalemmal V-ATPase was identified as an Lf target in cancer cells. V-ATPase is a proton pump critical for cellular homeostasis that migrates to the plasma membrane of highly metastatic cancer cells contributing to the acidity of the tumor microenvironment. Cancer cells were found to be susceptible to Lf only when this proton pump is present at the plasma membrane. Plasmalemmal V-ATPase can thus be an excellent biomarker for driving treatment decisions and forecasting clinical outcomes of Lf-based anticancer strategies. Future research endeavors should thus seek to validate this biomarker by thorough preclinical and clinical studies, as well as to develop effective methods for its detection under clinical settings.


Assuntos
Adenosina Trifosfatases , Lactoferrina , Adenosina Trifosfatases/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Humanos , Lactoferrina/metabolismo , Microambiente Tumoral
16.
Biotechnol J ; 17(3): e2100400, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34882970

RESUMO

BACKGROUND AND GOAL: Curcumin is a polyphenolic compound found in Curcuma longa. This bioactive molecule has several reported health-benefit effects, being the anticarcinogenic activity among the most promising ones. However, curcumin extraction from natural sources is hampered by impure products obtained from harsh chemicals and limited by plant seasonality and high prices. Therefore, curcumin heterologous production emerged as an interesting alternative. Escherichia coli has been explored as chassis but the implementation of the pathway in Saccharomyces cerevisiae can have several advantages, including its generally regarded as safe status. Hence, S. cerevisiae was engineered for the first time to produce curcumin from its precursor ferulic acid. METHODS AND RESULTS: The enzymes 4-coumarate-CoA ligase (4CL1) from Arabidopsis thaliana or feruloyl-CoA synthetase (FerA) from Pseudomonas paucimobilis and type III polyketide synthases (PKSs) from Oryza sativa or C. longa were expressed in BY4741 strain. To avoid ferulic acid deviation, the gene FDC1 coding a ferulic acid decarboxylase was deleted. The maximum curcumin titer was obtained with FerA combined with C. longa PKSs (2.7 mg L-1 ). CONCLUSIONS AND IMPLICATIONS: Up to our knowledge, this is the first work reporting the expression of a feruloyl-CoA synthase and also curcuminoid biosynthetic enzymes in S. cerevisiae, and consequently, curcumin production.


Assuntos
Curcumina , Saccharomyces cerevisiae , Ácidos Cumáricos/metabolismo , Curcumina/metabolismo , Ligases/genética , Ligases/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Int J Biol Macromol ; 186: 788-799, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34245738

RESUMO

A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear ß(2 â†’ 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.


Assuntos
Frutanos/isolamento & purificação , Paenibacillus/metabolismo , Petróleo/microbiologia , Configuração de Carboidratos , Fracionamento Químico , Temperatura Alta , Relação Estrutura-Atividade , Vitrificação
18.
Int J Biol Macromol ; 186: 54-70, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237360

RESUMO

Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.


Assuntos
Inibidores Enzimáticos/farmacologia , Lactoferrina/farmacologia , ATPases Vacuolares Próton-Translocadoras/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/química , Hidrólise , Lactoferrina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Int J Food Microbiol ; 348: 109207, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33930837

RESUMO

Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Glicolipídeos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Produtos Agrícolas , Genes Fúngicos/genética , Humanos , Hifas/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/metabolismo
20.
Sci Rep ; 11(1): 8614, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883615

RESUMO

Triple-negative breast cancer is the most aggressive subtype of invasive breast cancer with a poor prognosis and no approved targeted therapy. Hence, the identification of new and specific ligands is essential to develop novel targeted therapies. In this study, we aimed to identify new aptamers that bind to highly metastatic breast cancer MDA-MB-231 cells using the cell-SELEX technology aided by high throughput sequencing. After 8 cycles of selection, the aptamer pool was sequenced and the 25 most frequent sequences were aligned for homology within their variable core region, plotted according to their free energy and the key nucleotides possibly involved in the target binding site were analyzed. Two aptamer candidates, Apt1 and Apt2, binding specifically to the target cells with [Formula: see text] values of 44.3 ± 13.3 nM and 17.7 ± 2.7 nM, respectively, were further validated. The binding analysis clearly showed their specificity to MDA-MB-231 cells and suggested the targeting of cell surface receptors. Additionally, Apt2 revealed no toxicity in vitro and showed potential translational application due to its affinity to breast cancer tissue sections. Overall, the results suggest that Apt2 is a promising candidate to be used in triple-negative breast cancer treatment and/or diagnosis.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sequência de Bases , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células MCF-7 , Técnica de Seleção de Aptâmeros/métodos , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA