Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38057942

RESUMO

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Assuntos
Quitinases , Humanos , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnologia , Fungos
2.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215800

RESUMO

Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Vírus Gigantes/genética , Mimiviridae/genética , Virófagos/genética , Brasil , Genoma Viral , Genômica , Vírus Gigantes/classificação , Mimiviridae/classificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética , Virófagos/classificação
3.
J Ethnopharmacol ; 266: 113423, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007390

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. AIM OF THE STUDY: This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. MATERIALS AND METHODS: First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. RESULTS: HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 µg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. CONCLUSIONS: Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.


Assuntos
Antibacterianos/farmacologia , Salacia/química , Staphylococcus aureus/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Chlorocebus aethiops , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Triterpenos Pentacíclicos , Raízes de Plantas , Infecções Estafilocócicas/tratamento farmacológico , Triterpenos/isolamento & purificação , Células Vero
4.
Arch Virol ; 165(6): 1267-1278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333117

RESUMO

Giant viruses of amoebas are a remarkable group of viruses. In addition to their large size and peculiar structures, the genetic content of these viruses is also special. Among the genetic features of these viruses that stand out is the presence of coding regions for elements involved in translation, a complex biological process that occurs in cellular organisms. No viral genome described so far has such a complex genetic arsenal as those of giant viruses, which code for several of these elements. Currently, tupanviruses have the most complete set of translation genes in the known virosphere. In this review, we have condensed what is currently known about translation genes in different groups of giant viruses and theorize about their biological importance, origin, and evolution, and what might possibly be found in the coming years.


Assuntos
Vírus Gigantes/genética , Mimiviridae/genética , Amoeba/virologia , Evolução Molecular , Genoma Viral , Vírus Gigantes/patogenicidade , Especificidade de Hospedeiro/genética , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , Filogenia , Biossíntese de Proteínas , Proteoma/genética , RNA Ribossômico 16S/genética , RNA Viral/genética
5.
Arch Virol ; 165(4): 853-863, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32052196

RESUMO

Since its discovery, the first identified giant virus associated with amoebae, Acanthamoeba polyphaga mimivirus (APMV), has been rigorously studied to understand the structural and genomic complexity of this virus. In this work, we report the isolation and genomic characterization of a new mimivirus of lineage B, named "Borely moumouvirus". This new virus exhibits a structure and replicative cycle similar to those of other members of the family Mimiviridae. The genome of the new isolate is a linear double-strand DNA molecule of ~1.0 Mb, containing over 900 open reading frames. Genome annotation highlighted different translation system components encoded in the DNA of Borely moumouvirus, including aminoacyl-tRNA synthetases, translation factors, and tRNA molecules, in a distribution similar to that in other lineage B mimiviruses. Pan-genome analysis indicated an increase in the genetic arsenal of this group of viruses, showing that the family Mimiviridae is still expanding. Furthermore, phylogenetic analysis has shown that Borely moumouvirus is closely related to moumouvirus australiensis. This is the first mimivirus lineage B isolated from Brazilian territory to be characterized. Further prospecting studies are necessary for us to better understand the diversity of these viruses so a better classification system can be established.


Assuntos
Genoma Viral , Mimiviridae/isolamento & purificação , Rios/virologia , Brasil , Genômica , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/fisiologia , Filogenia , Replicação Viral
6.
Front Microbiol ; 10: 671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001237

RESUMO

Since Acanthamoeba polyphaga mimivirus (APMV) was identified in 2003, several other giant viruses of amoebae have been isolated, highlighting the uniqueness of this group. In this context, the tupanviruses were recently isolated from extreme environments in Brazil, presenting virions with an outstanding tailed structure and genomes containing the most complete set of translation genes of the virosphere. Unlike other giant viruses of amoebae, tupanviruses present a broad host range, being able to replicate not only in Acanthamoeba sp. but also in other amoebae, such as Vermamoeba vermiformis, a widespread, free-living organism. Although the Tupanvirus cycle in A. castellanii has been analyzed, there are no studies concerning the replication of tupanviruses in other host cells. Here, we present an in-depth microscopic study of the replication cycle of Tupanvirus in V. vermiformis. Our results reveal that Tupanvirus can enter V. vermiformis and generate new particles with similar morphology to when infecting A. castellanii cells. Tupanvirus establishes a well-delimited electron-dense viral factory in V. vermiformis, surrounded by lamellar structures, which appears different when compared with different A. castellanii cells. Moreover, viral morphogenesis occurs entirely in the host cytoplasm within the viral factory, from where complete particles, including the capsid and tail, are sprouted. Some of these particles have larger tails, which we named "supertupans." Finally, we observed the formation of defective particles, presenting abnormalities of the tail and/or capsid. Taken together, the data presented here contribute to a better understanding of the biology of tupanviruses in previously unexplored host cells.

7.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31019058

RESUMO

Viruses depend on cells to replicate and can cause considerable damage to their hosts. However, hosts have developed a plethora of antiviral mechanisms to counterattack or prevent viral replication and to maintain homeostasis. Advantageous features are constantly being selected, affecting host-virus interactions and constituting a harsh race for supremacy in nature. Here, we describe a new antiviral mechanism unveiled by the interaction between a giant virus and its amoebal host. Faustovirus mariensis infects Vermamoeba vermiformis, a free-living amoeba, and induces cell lysis to disseminate into the environment. Once infected, the cells release a soluble factor that triggers the encystment of neighbor cells, preventing their infection. Remarkably, infected cells stimulated by the factor encyst and trap the viruses and viral factories inside cyst walls, which are no longer viable and cannot excyst. This unprecedented mechanism illustrates that a plethora of antiviral strategies remains to be discovered in nature.IMPORTANCE Understanding how viruses of microbes interact with its hosts is not only important from a basic scientific point of view but also for a better comprehension of the evolution of life. Studies involving large and giant viruses have revealed original and outstanding mechanisms concerning virus-host relationships. Here, we report a mechanism developed by Vermamoeba vermiformis, a free-living amoeba, to reduce Faustovirus mariensis dissemination. Once infected, V. vermiformis cells release a factor that induces the encystment of neighbor cells, preventing infection of further cells and/or trapping the viruses and viral factories inside the cyst walls. This phenomenon reinforces the need for more studies regarding large/giant viruses and their hosts.


Assuntos
Amebozoários/virologia , Vírus Gigantes/fisiologia , Replicação Viral/fisiologia , Vírus não Classificados/fisiologia
8.
Adv Virus Res ; 103: 135-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635075

RESUMO

The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.


Assuntos
Especificidade de Hospedeiro , Mimiviridae/fisiologia , Biossíntese de Proteínas , Proteínas Virais/genética , Amoeba/virologia , Genoma Viral , Vírus Gigantes/fisiologia , Interações Hospedeiro-Patógeno , Mimiviridae/isolamento & purificação , Ribossomos/genética , Ribossomos/virologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
9.
Arch Virol ; 164(1): 325-331, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30291500

RESUMO

The genus "Tupanvirus" is a new proposed taxon to be included in the family Mimiviridae. The two known tupanvirus isolates were isolated from soda lake and oceanic sediments samples collected in Brazil and were named "tupanvirus soda lake" and "tupanvirus deep ocean", respectively. These viruses exhibit similarities to amoeba-infecting mimiviruses, but there are also several differences that place them in a separate group within the family Mimiviridae. Their virions have a mean size of 1.2 µm, which include a mimivirus-like capsid and a large cylindrical tail, both covered by fibrils. The linear double-stranded DNA genomes of up to 1,516,267 base pairs encode over 1,200 genes, among which ~ 30% have no homologs in any database, including in other mimivirus genomes. Compared to other mimiviruses, tupanviruses exhibit a broader host range and cause a cytotoxic effect in host and non-host organisms, a phenotype that is not observed for other mimiviruses. Remarkably, these viruses possess the most complete gene set related to the protein synthesis process, including 20 aminoacyl-tRNA synthetases, 67-70 tRNAs, many translation factors, and genes involved in maturation and modification of tRNA and mRNA, among others. Moreover, diverse phylogenomic analyses put tupanviruses in a distinct group within the family Mimiviridae. In light of the set of different features observed for these giant viruses, we propose establishment of a new genus to allow proper classification of two known tupanviruses and possibly many more similar viruses yet to be characterized.


Assuntos
Mimiviridae/classificação , Mimiviridae/genética , Amoeba/virologia , DNA Viral , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica , Filogenia , Proteoma
10.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118120

RESUMO

The inclusion of Mimiviridae members in the putative monophyletic nucleocytoplasmic large DNA virus (NCLDV) group is based on genomic and phylogenomic patterns. This shows that, along with other viral families, they share a set of genes known as core or "hallmark genes," including the gene for the major capsid protein (MCP). Although previous studies have suggested that the maturation of mimivirus MCP transcripts is dependent on splicing, there is little information about the processing of this transcript in other mimivirus isolates. Here we report the characterization of a new mimivirus isolate, called Kroon virus (KV) mimivirus. Analysis of the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates revealed a remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. In addition, sequencing of KV and Acanthamoeba polyphaga mimivirus (APMV) MCP transcripts has shown that inside the family, even related giant viruses may present different ways to process the MCP mRNA. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.IMPORTANCE Mimivirus isolates have been obtained by prospecting studies since 2003. Based on genomic and phylogenomic studies of conserved genes, these viruses have been clustered together with members of six other viral families. Although the major capsid protein (MCP) gene is an important member of the so-called "hallmark genes," there is little information about the processing and structure of this gene in many mimivirus isolates. In this work, we have analyzed the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates; these genes showed remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.


Assuntos
Proteínas do Capsídeo/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Mimiviridae/genética , Splicing de RNA , Transcrição Gênica , Genoma Viral , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Mimiviridae/ultraestrutura , Filogenia , RNA Viral , Replicação Viral , Microbiologia da Água
11.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878069

RESUMO

Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus.IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle.


Assuntos
Acanthamoeba castellanii/virologia , Mimiviridae/fisiologia , Internalização do Vírus , Replicação Viral/fisiologia , Desenvelopamento do Vírus/fisiologia , Acanthamoeba castellanii/metabolismo , Fagocitose
12.
Curr Opin Microbiol ; 31: 88-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039270

RESUMO

The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites.


Assuntos
Acanthamoeba/virologia , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Pinocitose/fisiologia , Internalização do Vírus , DNA Viral/genética , Evolução Molecular , Mimiviridae/metabolismo
13.
J Virol ; 89(23): 11812-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378162

RESUMO

UNLABELLED: Acanthamoeba polyphaga mimivirus (APMV) is a giant virus from the Mimiviridae family. It has many unusual features, such as a pseudoicosahedral capsid that presents a starfish shape in one of its vertices, through which the ∼ 1.2-Mb double-stranded DNA is released. It also has a dense glycoprotein fibril layer covering the capsid that has not yet been functionally characterized. Here, we verified that although these structures are not essential for viral replication, they are truly necessary for viral adhesion to amoebae, its natural host. In the absence of fibrils, APMV had a significantly lower level of attachment to the Acanthamoeba castellanii surface. This adhesion is mediated by glycans, specifically, mannose and N-acetylglucosamine (a monomer of chitin and peptidoglycan), both of which are largely distributed in nature as structural components of several organisms. Indeed, APMV was able to attach to different organisms, such as Gram-positive bacteria, fungi, and arthropods, but not to Gram-negative bacteria. This prompted us to predict that (i) arthropods, mainly insects, might act as mimivirus dispersers and (ii) by attaching to other microorganisms, APMV could be ingested by amoebae, leading to the successful production of viral progeny. To date, this mechanism has never been described in the virosphere. IMPORTANCE: APMV is a giant virus that is both genetically and structurally complex. Its size is similar to that of small bacteria, and it replicates inside amoebae. The viral capsid is covered by a dense glycoprotein fibril layer, but its function has remained unknown, until now. We found that the fibrils are not essential for mimivirus replication but that they are truly necessary for viral adhesion to the cell surface. This interaction is mediated by glycans, mainly N-acetylglucosamine. We also verified that APMV is able to attach to bacteria, fungi, and arthropods. This indicates that insects might act as mimivirus dispersers and that adhesion to other microorganisms could facilitate viral ingestion by amoebae, a mechanism never before described in the virosphere.


Assuntos
Acanthamoeba/virologia , Glicoproteínas/metabolismo , Mimiviridae/fisiologia , Proteínas Virais/metabolismo , Ligação Viral , Acanthamoeba/fisiologia , Acanthamoeba/ultraestrutura , Acetilglucosamina/metabolismo , Análise de Variância , Manose/metabolismo , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA