Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nat Nanotechnol ; 19(6): 867-878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750164

RESUMO

Owing to their distinct physical and chemical properties, inorganic nanoparticles (NPs) have shown promising results in preclinical cancer therapy, but designing and engineering them for effective therapeutic purposes remains a challenge. Although a comprehensive database of inorganic NP research is not currently available, it is crucial for developing effective cancer therapies. In this context, machine learning (ML) has emerged as a transformative tool, but its adaptation to nanomedicine is hindered by inexistent or small datasets. Here we assembled a large database of inorganic NPs, comprising experimental datasets from 745 preclinical studies in cancer nanomedicine. Using descriptive statistics and explainable ML models we mined this database to gain knowledge of inorganic NP design patterns and inform future NP research for cancer treatment. Our analyses suggest that NP shape and therapy type are prominent features in determining in vivo efficacy, measured as a percentage of tumour reduction. Moreover, our database provides a large-scale open-access resource for discriminative ML that the broader nanotechnology community can utilize. Our work blueprints data mining for translational cancer research and offers evidence for standardizing NP reporting to accelerate and de-risk inorganic NP-based drug delivery, which may help to improve patient outcomes in clinical settings.


Assuntos
Aprendizado de Máquina , Nanomedicina , Nanopartículas , Neoplasias , Nanopartículas/química , Humanos , Neoplasias/tratamento farmacológico , Animais , Nanomedicina/métodos , Camundongos , Bases de Dados Factuais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem
2.
Biochem Pharmacol ; 222: 116075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395266

RESUMO

Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.


Assuntos
Antineoplásicos , Antipsicóticos , Neoplasias , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Fenotiazinas/farmacologia , Fenotiazinas/uso terapêutico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Autofagia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
3.
J Chemother ; 36(3): 222-237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37800867

RESUMO

Countless efforts have been made to prevent and suppress the formation and spread of melanoma. Natural astaxanthin (AST; extracted from the alga Haematococcus pluvialis) showed an antitumor effect on various cancer cell lines due to its interaction with the cell membrane. This study aimed to characterize the antitumor effect of AST against B16F10-Nex2 murine melanoma cells using cell viability assay and evaluate its mechanism of action using electron microscopy, western blotting analysis, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and mitochondrial membrane potential determination. Astaxanthin exhibited a significant cytotoxic effect in murine melanoma cells with features of apoptosis and autophagy. Astaxanthin also decreased cell migration and invasion in vitro assays at subtoxic concentrations. In addition, assays were conducted in metastatic cancer models in mice where AST significantly decreased the development of pulmonary nodules. In conclusion, AST has cytotoxic effect in melanoma cells and inhibits cell migration and invasion, indicating a promising use in cancer treatment.


Assuntos
Antineoplásicos , Melanoma Experimental , Camundongos , Animais , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia , Proliferação de Células , Camundongos Endogâmicos C57BL , Xantofilas
4.
Amyloid ; 31(1): 32-41, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37493395

RESUMO

BACKGROUND: Early diagnosis and prognostic stratification of cardiac transthyretin amyloidosis are crucial. Although 99mTc 3,3-diphosphono-1,2-propanedicarboxylic acid (DPD) scintigraphy is the preferred method for the non-invasive diagnosis, its accuracy appears to be limited in transthyretin amyloidosis protein (ATTR) V30M mutation. Furthermore, its prognostic value in this mutation is unknown. This study investigated the diagnostic value of DPD scintigraphy to detect ATTR cardiomyopathy in V30M mutation and explored its prognostic value regarding mortality. METHODS: A total of 288 ATTR V30M mutation carriers (median age: 46 years; 49% males) without myocardial thickening (defined as septal thickness ≥13mm) attributable to other causes and who underwent DPD scintigraphy were enrolled. ATTR cardiomyopathy was defined by septal thickness ≥13mm and at least one of the criteria: late heart-to-mediastinum (H/M) 123I-metaiodobenzylguanidine (MIBG) uptake ratio <1.60; electrical heart disease or biopsy-documented amyloidosis. RESULTS: ATTR cardiomyopathy was identified in 41 (14.2%) patients and cardiac DPD uptake in 34 (11.8%). During a mean follow-up of 33.6 ± 1.2 months, 16 patients died (5.6%). Mortality was 14 times higher in patients with ATTR cardiomyopathy, 13 times higher in those with DPD uptake and 10 times higher in those with late H/M MIBG <1.60. The combined assessment of septal thickness and cardiac DPD uptake improved risk stratification: patients without septal thickening and without DPD retention had an excellent prognosis while those who presented either or both of them had a significantly worse prognosis, with 5-year mortality rates ranging from 39.9 to 53.3%. CONCLUSIONS: DPD scintigraphy is useful for prognostic stratification of ATTR V30M mutation carriers. Patients without septal thickening and no DPD uptake present the best prognosis compared to those with any signs of cardiac involvement.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Prognóstico , 3-Iodobenzilguanidina , Pré-Albumina/genética , Neuropatias Amiloides Familiares/diagnóstico por imagem , Neuropatias Amiloides Familiares/genética , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cintilografia
6.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298404

RESUMO

Over the past few decades, the life expectancy of humankind has increased significantly due to advancements in life sciences and medical research, particularly given our increasing success in the epidemiological and pharmacological management of bacterial, fungi, and viral infections [...].


Assuntos
Infecções por HIV , Humanos , Brasil/epidemiologia , Expectativa de Vida , Contagem de Linfócito CD4
8.
Life (Basel) ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36294912

RESUMO

Mitochondria have pivotal roles in cellular physiology including energy metabolism, reactive oxygen species production, Ca2+ homeostasis, and apoptosis. Altered mitochondrial morphology and function is a common feature of cancer cells and the regulation of mitochondrial homeostasis has been identified as a key to the response to chemotherapeutic agents in human leukemias. Here, we explore the mechanistic aspects of cytotoxicity produced by thioridazine (TR), an antipsychotic drug that has been investigated for its anticancer potential in human leukemia cellular models. TR exerts selective cytotoxicity against human leukemia cells in vitro. A PCR array provided a general view of the expression of genes involved in cell death pathways. TR immediately produced a pulse of cytosolic Ca2+, followed by mitochondrial uptake, resulting in mitochondrial permeabilization, caspase 9/3 activation, endoplasmic reticulum stress, and apoptosis. Ca2+ chelators, thiol reducer dithiothreitol, or CHOP knockdown prevented TR-induced cell death. TR also exhibited potent cytotoxicity against BCL-2/BCL-xL-overexpressing leukemia cells. Additionally, previous studies have shown that TR exhibits potent antitumor activity in vivo in different solid tumor models. These findings show that TR induces a Ca2+-mediated apoptosis with involvement of mitochondrial permeabilization and ER stress in leukemia and it emphasizes the pharmacological potential of TR as an adjuvant in antitumor chemotherapy.

9.
Rev Port Cardiol ; 41(8): 719.e1-719.e5, 2022 Aug.
Artigo em Inglês, Português | MEDLINE | ID: mdl-36073272

RESUMO

With the development of interventional procedures, iatrogenic aorto-right ventricular fistulae are increasingly reported. They may follow surgical aortic valve replacement or percutaneous aortic valve implantation, leading to high morbidity. Traditionally, treatment of fistulae was based on surgical repair, but with advances in endovascular technologies, more emphasis is now placed on percutaneous closure. We report the case of a 78-year-old patient with severe symptomatic aortic stenosis who underwent surgical aortic valve replacement with a Perceval sutureless valve. One month later, he presented with symptoms and signs of heart failure. Transthoracic and transesophageal echocardiography confirmed the presence of a aorto-right ventricular fistula. The fistula was successfully closed percutaneously with an Amplatzer Vascular Plug II, in an intracardiac echocardiography-guided procedure. Aorto-right ventricular fistula is a rare finding after surgical aortic valve replacement and to our knowledge it has never been associated with sutureless aortic valve replacement. A percutaneous procedure with an appropriately selected device may be encouraged because of the high morbidity and mortality of redo open-heart surgery. To minimize the risk of a second general anesthesia, the use of intracardiac echocardiography to guide the percutaneous procedure is feasible and safe.

10.
Angew Chem Int Ed Engl ; 61(47): e202210498, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089535

RESUMO

Dipeptidyl peptidases 8 and 9 (DPP8/9) have gathered interest as drug targets due to their important roles in biological processes like immunity and tumorigenesis. Elucidation of their distinct individual functions remains an ongoing task and could benefit from the availability of novel, chemically diverse and selective chemical tools. Here, we report the activity-based protein profiling (ABPP)-mediated discovery of 4-oxo-ß-lactams as potent, non-substrate-like nanomolar DPP8/9 inhibitors. X-ray crystallographic structures revealed different ligand binding modes for DPP8 and DPP9, including an unprecedented targeting of an extended S2' (eS2') subsite in DPP8. Biological assays confirmed inhibition at both target and cellular levels. Altogether, our integrated chemical proteomics and structure-guided small molecule design approach led to novel DPP8/9 inhibitors with alternative molecular inhibition mechanisms, delivering the highest selectivity index reported to date.


Assuntos
Dipeptidases , Dipeptidases/metabolismo , beta-Lactamas/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Proteômica , Cristalografia por Raios X
11.
Nat Chem ; 14(7): 754-765, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764792

RESUMO

Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, ß-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of ß-lapachone upon antibody-mediated delivery. Conjugation of protected ß-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.


Assuntos
Antineoplásicos , Produtos Biológicos , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Camundongos , Oxirredução , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Quinonas
12.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566311

RESUMO

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.


Assuntos
Fabaceae , Melanoma , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Melanoma/metabolismo , Processos Neoplásicos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores da Tripsina/farmacologia
13.
J Biophotonics ; 15(8): e202200058, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445797

RESUMO

It is postulated that the inflammatory process resulting from SARS-CoV-2 infection is the main cause of smell and taste dysfunctions in patients. In view of this, photobiomodulation, due to its anti-inflammatory and antioxidant effects, may be a promising therapeutic modality to treat these disorders. In the present case report, we observed clinical improvement in the symptoms of anosmia and ageusia related to COVID-19 after treatment with photobiomodulation. Due to the inflammatory nature of COVID-19 and the anti-inflammatory effects, photobiomodulation antioxidants already proven in the literature make it a promising therapeutic modality, especially sequela COVID-related, including olfactory (anosmia) and taste (ageusia) dysfunction. In the present case report, the patient's olfactory and gustatory functions were re-established after 10 treatment sessions with photobiomodulation.


Assuntos
Ageusia , COVID-19 , Terapia com Luz de Baixa Intensidade , Transtornos do Olfato , Ageusia/etiologia , Anosmia , COVID-19/complicações , COVID-19/radioterapia , Humanos , Transtornos do Olfato/complicações , SARS-CoV-2 , Olfato , Distúrbios do Paladar/complicações
14.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35326089

RESUMO

Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.

15.
Bioorg Med Chem ; 46: 116365, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419821

RESUMO

Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Leishmania/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Leishmania/enzimologia , Leishmaniose/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma/enzimologia , Tripanossomíase/tratamento farmacológico
16.
J Steroid Biochem Mol Biol ; 212: 105950, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271024

RESUMO

A new promising steroid derivative of Exemestane (Exe), the drug used for the treatment of estrogen-dependent breast cancer, was synthesized and evaluated against a set of human cancer cell lines. The new compound (Oxymestane-D1, Oxy) was tested comparatively with Exe against colon (C2BBe1, WiDr), liver (HepG2, HuH-7), lung (A549, H1299) and prostate (LNCaP, PC3) human cancer cell lines. Likewise, its effect on human colon normal cells (CCD-841 CoN) and human normal fibroblast cells (HFF-1) was studied. The cytostatic activity of Oxy was also compared with that of the reference cytostatic drugs used in chemotherapy protocols, namely carboplatin, cisplatin, doxorubicin, epirubicin, etoposide, flutamide, 5-fluorouracil, irinotecan, oxaliplatin and sorafenib. In all cell lines tested, Oxy proved to be more powerful cytostatic than Exe. Additionally, the IC50 at 72 h showed a three-fold activity greater than 5-fluorouracil in the WiDr cell line, twice as high as cisplatin for cell line A549 and five times higher than cisplatin for cell line H1299. Also, Oxy surprisingly revealed to induce DNA damage and inhibit the DNA damage response (DDR) proteins ATM, ATR, CHK1 and CHK2. The results obtained allow concluding that Oxy can be a promising anticancer agent to be used in chemotherapy protocols. Furthermore, its ability to inhibit crucial components of DDR can also be useful for the monotherapy or for combination with chemo and/or radiotherapy of cancer.


Assuntos
Androstadienos/farmacologia , Antineoplásicos/farmacologia , Citostáticos/farmacologia , Neoplasias/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Estrogênios , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
17.
ACS Cent Sci ; 7(5): 868-881, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079902

RESUMO

The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.

18.
Free Radic Biol Med ; 171: 302-313, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022401

RESUMO

A new therapy based on atmospheric plasma, the fourth state of matter, has raised the medical community's attention by circumventing many undesirable effects of old anticancer treatments. This work aimed to evaluate the effect, selectivity, and mechanisms of action of cold atmospheric plasma (CAP) in human retinoblastoma cells. An electronic device was designed to generate CAP in the open air, 2 mm above seeded cell cultures. Three approaches were performed: direct use of CAP, plasma-activated media (PAM), and conditioned media (CM). Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) of PAM were performed. To evaluate cytotoxicity and selectivity, similarly treated Y79, fibroblasts HFF1, and retinal RPE-D407 cells were assessed. After 60 s of direct CAP treatment, the metabolic activity of retinoblastoma cells decreased more than 50%, mainly due to apoptosis, while HFF1 and RPE-D407 remained viable. Similar results were obtained with indirect treatment (PAM and CM). Cell survival was reduced, and cells accumulated in S and G2/M phases; however, no DNA strand breaks were detected. Regarding RS, plasma increased extracellular and intracellular concentrations of peroxides and nitric oxide, despite glutathione activation and lack of success in reverting cytotoxicity with some RS inhibitors. RS increase comes in two timely distant waves, the first one originating from the plasma itself with secondary solubilization and passive diffusion, the second wave deriving from the mitochondrion. The addition of low doses of carboplatin to CAP-treated cells resulted in a significant increase in cytotoxicity compared with either regimen alone. Additionally, maximal antiangiogenic effects were obtained with 60 s of plasma exposure. Direct and indirect treatment with CAP might be a selective therapy with the potential to target tumour cells and supporting the microenvironment.


Assuntos
Antineoplásicos , Gases em Plasma , Neoplasias da Retina , Retinoblastoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Gases em Plasma/farmacologia , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Microambiente Tumoral
19.
Life (Basel) ; 11(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923896

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a "double-edged sword" contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.

20.
Int J Radiat Biol ; 97(5): 714-726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764249

RESUMO

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is associated with a very unfavorable prognosis. At this advanced stage of the disease, there are several therapeutic strategies approved in recent times, being one of them Radium-223 dichloride (Radium-223). However, its mechanisms of action and the process that conducts to cell death are not fully understood. Given this, our main goal is to characterize the radiobiological effects induced by Radium-223 and to evaluate its kinetics on metastatic Prostate Cancer (mPCa) cells. MATERIALS AND METHODS: In vitro studies were conducted using two mPCa cell lines, the LNCaP and PC3, the first being derived from lymph node metastasis and the second from bone metastasis. Kinetic studies were conducted to access the capacity of these cell lines to uptake, retain and internalize the Radium-223. For the assessment of radiobiological effects, cells were first exposed to different doses of Radium-223 and the clonogenic assay was done to evaluate cell survival and to determine lethal doses (LD50). Then, the effects were also evaluated in terms of proliferation, oxidative stress, morphological changes and cell damage. RESULTS: Radium-223 is uptaken by mPCa cells and reaches the nucleus, where it is retained over time. Irradiation decreases cell survival and proliferation, with LNCaP cells (LD50 = 1.73mGy) being more radiosensitive than PC3 cells (LD50 = 4.20mGy). Irradiated cells showed morphological changes usually associated with apoptosis and a dose-dependent increase in DNA damage. Moreover, activation of cell cycle checkpoints occurs through ATM/CHK2 pathway, which is involved in cell cycle arrest and cell death. CONCLUSIONS: The cytotoxic and anti-proliferative effects on both cell lines showed that Radium-223 can decrease the aggressiveness of tumor cells by decreasing the cell survival and proliferation and, also, by increasing the DNA damage. The similar results observed in both cell lines indicated that Radium-223 may have the potential to be used as a therapeutic option also for mCRPC patients with lymph node metastasis. The activation of DNA Damage Response pathways allows the possibility to understand the importance of these checkpoints as targets for new combined therapies.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias de Próstata Resistentes à Castração/patologia , Rádio (Elemento)/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Dano ao DNA , Humanos , Cinética , Metástase Linfática , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA