Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 137: 185-195, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30818011

RESUMO

Niemann-Pick disease type B is a hereditary rare condition caused by deficiency of the acid sphingomyelinase (ASM) that is needed for lysosomal hydrolysis of sphingomyelin to ceramide and phosphocholine. This deficiency leads to a massive accumulation of sphingomyelin in cells throughout the body, predominantly in the liver, spleen and lungs. Currently, there is no effective treatment available. Olipudase alfa (recombinant human acid sphingomyelinase; rhASM) is an investigational drug that has shown promising results. However, dose-dependent toxicity was observed in mice upon the intravenous administration of rhASM, potentially due to the systemic release of ceramide upon the extracellular degradation of sphingomyelin by rhASM. Using a nanocarrier to deliver the rhASM to cells could improve the therapeutic window by shielding the rhASM to prevent the off-target degradation of sphingomyelin. For this aim, we recombinantly expressed hASM in human cells and loaded it into different liposomal formulations at a drug-to-lipid ratio of 4% (w/w). Among four formulations, the liposomal rhASM formulation with the composition DPPC:DOPS:BMP:CHOL:DiD (59:20:10:10:1 mol%) was selected because of its superiority concerning the encapsulation efficiency of rhASM (21%) and cellular uptake by fibroblasts and macrophages. The selected liposomal rhASM formulation significantly reduced the accumulated lyso-sphingomyelin in NPD-B fibroblasts by 71%, part of this effect was stimulated by the used lipids, compared to 55% when using the free rhASM enzyme. More importantly, the undesired extracellular degradation of sphingomyelin was reduced when using the selected liposomal rhASM by 61% relative to the free rhASM. The presented in vitro data indicate that the liposomal rhASM is effective and may provide a safer intervention than free rhASM.


Assuntos
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielinas/metabolismo , Animais , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lipídeos/química , Lipossomos , Lisossomos/metabolismo , Camundongos , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA