Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer ; 97(3): 575-85, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12548599

RESUMO

BACKGROUND: R-Ras is 55% identical to H-Ras. However, these two oncogenes seem to have different tumor-transforming potential. R-Ras induced cell transformation in fibroblasts but not in other cell types. R-Ras also reportedly induces a more invasive phenotype in breast epithelial cells through integrin activation. The authors studied the mechanisms whereby R-Ras induces a malignant phenotype. METHODS: Dominant negative (R-Ras43N) and constitutively active (R-Ras87L) mutants of R-Ras were stably transfected into human cervical epithelium C33A cells. Transfected cells were analyzed for adhesion, cell spreading, migration, and growth in culture and in nude mice. The activity of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-K) also was determined by Western blot analysis and by in vitro kinase assays. RESULTS: R-Ras87L-transfected cells, but not R-Ras43 N-transfected cells, had a higher growth rate in nude mice and in culture compared with control cells. None of the transfected C33A cells showed an increase in cell adhesion to fibronectin or collagen I, nor did they show an increment of beta1 integrin affinity. However, cells that expressed R-Ras87L, but not cells that expressed R-Ras 43N, presented a marked increase in cell spreading and migration through collagen-coated membranes. Increases in cell proliferation, spreading, and migration induced by R-Ras87L were inhibited by the PI 3-K inhibitor LY294002. In addition, PI 3-K activity, but not ERK activity, was increased only in cells that expressed R-Ras87L. CONCLUSIONS: These data suggest that the oncogene R-Ras promotes tumor growth of cervical epithelial cells and increases their migration potential over collagen through a pathway that involves PI 3-K.


Assuntos
Divisão Celular/genética , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Colo do Útero/citologia , Genes ras , Neoplasias do Colo do Útero/patologia , Animais , Adesão Celular , Ciclo Celular , Linhagem Celular Transformada , Colágeno , Células Epiteliais/citologia , Feminino , Fibronectinas , GTP Fosfo-Hidrolases , Genes ras/genética , Humanos , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno , Proteínas Oncogênicas , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Transfecção , Proteínas ras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA