Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780787

RESUMO

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Diferenciação Celular/genética , Humanos , Monócitos/metabolismo , Monócitos/citologia , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polaridade Celular/genética , RNA/genética , RNA/metabolismo , Adenosina/metabolismo
2.
J Allergy Clin Immunol ; 149(4): 1172-1184, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247433

RESUMO

T cells are established contributors to the pathogenesis of atopic dermatitis and psoriasis; yet, whether they are the key drivers or simply unwitting participants remains incompletely understood. Conversely, malignant T cells are the undisputed culprits of cutaneous T-cell lymphoma (CTCL), a group of diseases that share key clinical, histopathologic, and molecular features with inflammatory skin disease (ISD). Here, we compare the pathogenesis of ISD and CTCL and discuss the resulting insights. Recurrent, skin-limited disease implicates skin-resident memory T cells in both ISD and CTCL. In CTCL, malignant T cells recruit benign T cells into inflammatory skin lesions, a disease-amplifying function that has also been proposed for pathogenic T cells in ISD. Mechanistically, cytokines produced by malignant T cells in CTCL and by pathogenic T cells in ISD, respectively, are likely both necessary and sufficient to drive skin inflammation and pruritus, which in turn promotes skin barrier dysfunction and dysbiosis. Therapies for ISD target T-cell effector functions but do not address the chronicity of disease, whereas treatments for CTCL target malignant T cells but not primarily the symptoms of the disease. Integrating our understanding of ISD and CTCL can result in important insights into pathogenesis and therapy that may improve the lives of patients in both of these disease groups.


Assuntos
Dermatite Atópica , Linfoma Cutâneo de Células T , Dermatopatias , Neoplasias Cutâneas , Dermatite Atópica/patologia , Humanos , Linfoma Cutâneo de Células T/diagnóstico , Linfoma Cutâneo de Células T/patologia , Pele/patologia , Dermatopatias/patologia , Neoplasias Cutâneas/patologia
3.
PLoS One ; 16(11): e0248668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767572

RESUMO

BACKGROUND: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1ß production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Quinase C/metabolismo , Biomarcadores/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Pirina/metabolismo , Células U937
4.
Cancers (Basel) ; 13(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771657

RESUMO

The mRNA expression of the dipeptidyl peptidase 4 (DPP4) gene family is highly upregulated in human hepatocellular carcinoma (HCC) and is associated with poor survival in HCC patients. Compounds that inhibit the DPP4 enzyme family, such as talabostat and ARI-4175, can mediate tumour regression by immune-mediated mechanisms that are believed to include NLRP1 activation. This study investigated the expression and activity of the DPP4 family during the development of HCC and evaluated the efficacy of ARI-4175 in the treatment of early HCC in mice. This first report on this enzyme family in HCC-bearing mice showed DPP9 upregulation in HCC, whereas intrahepatic DPP8/9 and DPP4 enzyme activity levels decreased with age. We demonstrated that ARI-4175 significantly lowered the total number of macroscopic liver nodules in these mice. In addition, ARI-4175 increased intrahepatic inflammatory cell infiltration, including CD8+ T cell numbers, into the HCC-bearing livers. Furthermore, ARI-4175 activated a critical component of the inflammasome pathway, caspase-1, in these HCC-bearing livers. This is the first evidence of caspase-1 activation by a pan-DPP inhibitor in the liver. Our data suggest that targeting the DPP4 enzyme family may be a novel and effective approach to promote anti-tumour immunity in HCC via caspase-1 activation.

6.
Nucleic Acids Res ; 48(12): 6513-6529, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449925

RESUMO

Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function. We demonstrate that decreased IR in nuclear-detained mRNA is coupled with increased expression of genes encoding regulators of macrophage transcription, phagocytosis and inflammatory signalling, including ID2, IRF7, ENG and LAT. We further show that this dynamic IR program persists during the polarisation of resting macrophages into activated macrophages. In the presence of proinflammatory stimuli, intron-retaining CXCL2 and NFKBIZ transcripts are rapidly spliced, enabling timely expression of these key inflammatory regulators by macrophages. Our study provides novel insights into the molecular factors controlling vital regulators of the innate immune response.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Splicing de RNA , RNA Mensageiro/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Endoglina/genética , Endoglina/metabolismo , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Íntrons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Células THP-1
7.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971979

RESUMO

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Assuntos
Rim/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirinae/fisiologia , Doenças dos Roedores/virologia , Proteínas Virais/metabolismo , Tropismo Viral , Animais , Humanos , Camundongos , Parvovirinae/genética , Proteínas Virais/genética
8.
Immunol Cell Biol ; 98(2): 93-113, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698518

RESUMO

T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin-related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F-actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3-knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon-like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three-dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3-dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Movimento Celular/genética , Linfócitos T Citotóxicos/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína 3 Relacionada a Actina/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno , Análise de Célula Única , Linfócitos T Citotóxicos/citologia , Peixe-Zebra
9.
J Clin Invest ; 129(8): 3293-3309, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31135379

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a deadly disease with limited therapies. Tissue fibrosis is associated with Type 2 immune response, although the causal contribution of immune cells is not defined. The AP-1 transcription factor Fra-2 is upregulated in IPF lung sections and Fra-2 transgenic mice (Fra-2tg) exhibit spontaneous lung fibrosis. Here we show that Bleomycin-induced lung fibrosis is attenuated upon myeloid-inactivation of Fra-2 and aggravated in Fra-2tg bone marrow chimeras. Type VI collagen (ColVI), a Fra-2 transcriptional target, is up-regulated in three lung fibrosis models, and macrophages promote myofibroblast activation in vitro in a ColVI- and Fra-2-dependent manner. Fra-2 or ColVI inactivation does not affect macrophage recruitment and alternative activation, suggesting that Fra-2/ColVI specifically controls the paracrine pro-fibrotic activity of macrophages. Importantly, ColVI knock-out mice (KO) and ColVI-KO bone marrow chimeras are protected from Bleomycin-induced lung fibrosis. Therapeutic administration of a Fra-2/AP-1 inhibitor reduces ColVI expression and ameliorates fibrosis in Fra-2tg mice and in the Bleomycin model. Finally, Fra-2 and ColVI positively correlate in IPF patient samples and co-localize in lung macrophages. Therefore, the Fra-2/ColVI pro-fibrotic axis is a promising biomarker and therapeutic target for lung fibrosis, and possibly other fibrotic diseases.


Assuntos
Antígeno 2 Relacionado a Fos/biossíntese , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/imunologia , Miofibroblastos/metabolismo , Aloenxertos , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Colágeno Tipo VI/biossíntese , Colágeno Tipo VI/genética , Antígeno 2 Relacionado a Fos/genética , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Quimeras de Transplante/genética , Quimeras de Transplante/metabolismo
10.
Sci Rep ; 9(1): 7292, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086209

RESUMO

The ubiquitous intracellular protease dipeptidyl peptidase 9 (DPP9) has roles in antigen presentation and B cell signaling. To investigate the importance of DPP9 in immune regeneration, primary and secondary chimeric mice were created in irradiated recipients using fetal liver cells and adult bone marrow cells, respectively, using wild-type (WT) and DPP9 gene-knockin (DPP9S729A) enzyme-inactive mice. Immune cell reconstitution was assessed at 6 and 16 weeks post-transplant. Primary chimeric mice successfully regenerated neutrophils, natural killer, T and B cells, irrespective of donor cell genotype. There were no significant differences in total myeloid cell or neutrophil numbers between DPP9-WT and DPP9S729A-reconstituted mice. In secondary chimeric mice, cells of DPP9S729A-origin cells displayed enhanced engraftment compared to WT. However, we observed no differences in myeloid or lymphoid lineage reconstitution between WT and DPP9S729A donors, indicating that hematopoietic stem cell (HSC) engraftment and self-renewal is not diminished by the absence of DPP9 enzymatic activity. This is the first report on transplantation of bone marrow cells that lack DPP9 enzymatic activity.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Células-Tronco Hematopoéticas/fisiologia , Reconstituição Imune/fisiologia , Linfócitos/imunologia , Neutrófilos/imunologia , Animais , Transplante de Medula Óssea , Domínio Catalítico/genética , Diferenciação Celular/imunologia , Proliferação de Células , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Feto , Técnicas de Introdução de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos da radiação , Sistema Imunitário/efeitos da radiação , Fígado/citologia , Mutação com Perda de Função , Linfócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Neutrófilos/efeitos da radiação , Mutação Puntual , Quimeras de Transplante/imunologia , Irradiação Corporal Total
11.
Immunol Cell Biol ; 97(1): 29-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107066

RESUMO

BPSM1 (Bone phenotype spontaneous mutant 1) mice develop severe polyarthritis and heart valve disease as a result of a spontaneous mutation in the Tnf gene. In these mice, the insertion of a retrotransposon in the 3' untranslated region of Tnf causes a large increase in the expression of the cytokine. We have found that these mice also develop inducible bronchus-associated lymphoid tissue (iBALT), as well as nodular lymphoid hyperplasia (NLH) in the bone marrow. Loss of TNFR1 prevents the development of both types of follicles, but deficiency of TNFR1 in the hematopoietic compartment only prevents the iBALT and not the NLH phenotype. We show that the development of arthritis and heart valve disease does not depend on the presence of the tertiary lymphoid tissues. Interestingly, while loss of IL-17 or IL-23 limits iBALT and NLH development to some extent, it has no effect on polyarthritis or heart valve disease in BPSM1 mice.


Assuntos
Tecido Linfoide/patologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Medula Óssea/patologia , Hiperplasia , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-23/genética , Interleucina-23/metabolismo , Tecido Linfoide/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/genética
12.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257879

RESUMO

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Assuntos
Fibroblastos/citologia , Gelatinases/genética , Gelatinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteômica/métodos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Adipocinas/sangue , Adipocinas/química , Aminoácido Oxirredutases/sangue , Aminoácido Oxirredutases/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CXCL5/sangue , Quimiocina CXCL5/química , Endopeptidases , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Fator Estimulador de Colônias de Macrófagos/sangue , Fator Estimulador de Colônias de Macrófagos/química , Camundongos , Mapas de Interação de Proteínas , Proteólise , Especificidade por Substrato
13.
Sci Rep ; 8(1): 10283, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980757

RESUMO

The urgent unmet need for hepatocellular carcinoma (HCC) therapies is addressed here by characterising a novel mouse model of HCC in the context of ongoing liver damage and overnutrition. Male C57Bl/6J mice were treated with diethylnitrosamine (DEN) and thioacetamide (TAA), and some were provided with an atherogenic high fat diet (HFD). Inflammation, steatosis, fibrosis, 87 genes, liver lesions and intratumoural leukocyte subsets were quantified up to 24 weeks of age. Adding HFD to DEN/TAA increased fibrosis, steatosis and inflammation, and the incidence of both HCC and non-HCC dysplastic lesions. All lesions contained α-SMA positive fibroblasts. Macrophage marker F4/80 was not significantly different between treatment groups, but the macrophage-associated genes Arg-1 and Cd47 were differentially expressed. Fibrosis, cancer and cell death associated genes were upregulated in DEN/TAA/HFD livers. Fewer Kupffer cells and plasmacytoid dendritic cells were in tumours compared to control liver. In conclusion, combining a hepatotoxin with an atherogenic diet produced more intrahepatic tumours, dysplastic lesions and fibrosis compared to hepatotoxin alone. This new HCC model provides a relatively rapid means of examining primary HCC and potential therapies in the context of multiple hepatotoxins including those derived from overnutrition.


Assuntos
Carcinoma Hepatocelular/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica/efeitos adversos , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/patologia , Tioacetamida/toxicidade , Alquilantes/toxicidade , Animais , Carcinoma Hepatocelular/etiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Immunol Cell Biol ; 96(10): 1131-1139, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920767

RESUMO

Conventional dendritic cells (cDCs) are continuously replenished by bone marrow-derived precursors called pre-DCs, which traffic through the blood to peripheral tissues. Pre-DCs are a heterogeneous population that includes cDC subset-committed progenitors, namely pre-cDC1 and pre-cDC2, which give rise to mature cDC1 and cDC2, respectively. Regulation of pre-DC subset trafficking is thought to aid the host response to immune challenge. However, the molecular cues regulating pre-cDC1 versus pre-cDC2 trafficking toward peripheral sites during homeostasis and disease remain elusive. Here, we report that pre-cDC1 but not pre-cDC2 express the T helper type 1-associated chemokine receptor CXCR3. Moreover, we identify a cell-intrinsic role for CXCR3 in the trafficking of pre-cDC1 to melanoma tumors but not to non-inflamed organs. We also show that tumor cDC1 numbers can be increased pharmacologically by targeting dipeptidyl peptidase-4 (CD26), a negative regulator of CXCR3 ligands. Our findings demonstrate that pre-cDC1 trafficking is regulated distinctly from pre-cDC2, which is relevant for our understanding of the DC lineage in the context of cancer and inflammation.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Receptores de Quimiocinas/genética , Animais , Quimiotaxia/imunologia , Dipeptidil Peptidase 4/metabolismo , Melanoma , Melanoma Experimental , Camundongos , Camundongos Knockout , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores de Quimiocinas/metabolismo
15.
Immunity ; 47(2): 374-388.e6, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813662

RESUMO

The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.


Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritônio/microbiologia , Animais , Comunicação Celular , Autorrenovação Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células de Kupffer/microbiologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/patologia
16.
Nat Commun ; 6: 6970, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25912172

RESUMO

Defining the immune mechanisms underlying protective immunity to helminth infection remains an important challenge. Here we report that lung CD4(+) T cells and Group 2 innate lymphoid cells (ILC2s) work in concert to block Nippostrongylus brasiliensis (Nb) development in the parenchyma within 48 h in mice. Immune-damaged larvae have a striking morphological defect that is dependent on the expansion of IL-13-producing ILC2 and CD4(+) T cells, and the activation of M2 macrophages. This T-cell requirement can be bypassed by administration of IL-2 or IL-33, resulting in expansion of IL-13-producing ILC2s and larval killing. Depletion of ILC2s inhibits larval killing in IL-2-treated mice. Our results broaden understanding of ILC2's role in immunity to helminths by demonstrating that they not only act as alarmin sensors, but can also be sustained by CD4(+) T cells, ensuring both the prompt activation and the maintenance of IL-13-dependent M2 macrophage immunity in the lung.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Macrófagos/fisiologia , Nippostrongylus/fisiologia , Animais , Interleucina-2/metabolismo , Interleucina-33/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/fisiologia , Ratos Endogâmicos Lew
17.
Infect Immun ; 83(4): 1406-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644000

RESUMO

Gamma interferon (IFN-γ) drives antiparasite responses and immunopathology during infection with Plasmodium species. Immunity-related GTPases (IRGs) are a class of IFN-γ-dependent proteins that are essential for cell autonomous immunity to numerous intracellular pathogens. However, it is currently unknown whether IRGs modulate responses during malaria. We have used the Plasmodium berghei ANKA (PbA) model in which mice develop experimental cerebral malaria (ECM) to study the roles of IRGM1 and IRGM3 in immunopathology. Induction of mRNA for Irgm1 and Irgm3 was found in the brains and spleens of infected mice at times of peak IFN-γ production. Irgm3-/- but not Irgm1-/- mice were completely protected from the development of ECM, and this protection was associated with the decreased induction of inflammatory cytokines, as well as decreased recruitment and activation of CD8+ T cells within the brain. Although antigen-specific proliferation of transferred CD8+ T cells was not diminished compared to that of wild-type recipients following PbA infection, T cells transferred into Irgm3-/- recipients showed a striking impairment of effector differentiation. Decreased induction of several inflammatory cytokines and chemokines (interleukin-6, CCL2, CCL3, and CCL4), as well as enhanced mRNA expression of type-I IFNs, was found in the spleens of Irgm3-/- mice at day 4 postinfection. Together, these data suggest that protection from ECM pathology in Irgm3-/- mice occurs due to impaired generation of CD8+ effector function. This defect is nonintrinsic to CD8+ T cells. Instead, diminished T cell responses most likely result from defective initiation of inflammatory responses in myeloid cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , GTP Fosfo-Hidrolases/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Transferência Adotiva , Animais , Antígenos de Protozoários/imunologia , Encéfalo/imunologia , Encéfalo/parasitologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/transplante , Proliferação de Células/genética , Quimiocina CCL2/biossíntese , Quimiocina CCL3/biossíntese , Quimiocina CCL4/biossíntese , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/biossíntese , Interferon gama/imunologia , Interleucina-6/biossíntese , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética
18.
Eur J Immunol ; 45(4): 1141-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25590474

RESUMO

DC homeostasis is influenced by multiple factors, including the availability of GM-CSF and Flt3L, both of which exert positive effects on DC differentiation and survival. IL-2 and Treg cells have recently been proposed as negative regulators of DC numbers. It remains unclear whether their effects in immunosufficient mice are direct, or are mediated via activation of conventional T cells in response to deficiencies of IL-2 and/or Treg cells. Using a number of in vivo models, we have assessed the role of IL-2 and Treg-cell number on conventional splenic and LN DCs. We have found no evidence for a direct role of IL-2 or Treg cells in negatively regulating DC number. Our data indicate that the expansion of DCs in the absence of either IL-2 or Treg cells is an indirect effect secondary to the activation and proliferation of conventional T cells.


Assuntos
Proliferação de Células , Células Dendríticas/imunologia , Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteínas de Ligação a DNA/genética , Células Dendríticas/citologia , Proteínas de Homeodomínio/genética , Homeostase/imunologia , Memória Imunológica/imunologia , Interleucina-2/genética , Interleucina-2/farmacologia , Contagem de Linfócitos , Transtornos Linfoproliferativos , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia
19.
J Invest Dermatol ; 135(1): 84-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25007044

RESUMO

Site-specific differences in skin response to pathogens and in the course of cutaneous inflammatory diseases are well appreciated. The composition and localization of cutaneous leukocytes has been studied extensively using histology and flow cytometry. However, the precise three-dimensional (3D) distribution of distinct immune cell subsets within skin at different body sites requires visualization of intact living skin. We used intravital multiphoton microscopy in transgenic reporter mice in combination with quantitative flow cytometry to generate a 3D immune cell atlas of mouse skin. The 3D location of innate and adaptive immune cells and site-specific differences in the densities of macrophages, T cells, and mast cells at four defined sites (ear, back, footpad, and tail) is presented. The combinatorial approach further demonstrates an as yet unreported age-dependent expansion of dermal gamma-delta T cells. Localization of dermal immune cells relative to anatomical structures was also determined. Although dendritic cells were dispersed homogeneously within the dermis, mast cells preferentially localized to the perivascular space. Finally, we show the functional relevance of site-specific mast cell disparities using the passive cutaneous anaphylaxis model. These approaches are applicable to assessing immune cell variations and potential functional consequences in the setting of infection, as well as the pathogenesis of inflammatory skin conditions.


Assuntos
Dermatite/patologia , Dermoscopia/métodos , Imageamento Tridimensional/métodos , Leucócitos/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pele/patologia , Animais , Proteínas de Bactérias/genética , Células Dendríticas/patologia , Derme/irrigação sanguínea , Derme/patologia , Orelha Externa , Epiderme/patologia , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Subpopulações de Linfócitos/patologia , Macrófagos/patologia , Masculino , Mastócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/irrigação sanguínea
20.
J Immunol ; 193(5): 2087-95, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25070847

RESUMO

Naive T cell activation is normally restricted to the lymphoid organs, in part because of their limited ability to migrate into the parenchyma of peripheral tissues. The liver vasculature is unique, however, and circulating leukocytes within the hepatic sinusoids have direct access to liver-resident cells, which include an abundant population of Kupffer cells. It is well accepted that recognition of cognate Ag within the liver leads to naive CD8(+) T cell activation in situ, but it is unclear whether the liver also supports naive CD4(+) T cell activation. In this study, we show that naive CD4(+) T cells can be activated to proliferate in the liver when cognate Ag expression is induced in hepatocytes by recombinant adeno-associated viral vectors. Ag-specific retention and activation of naive CD4(+) T cells within the liver are independent of lymphoid tissues but dependent on a clodronate liposome-sensitive population of liver-resident phagocytic cells. To our knowledge, this study provides the first unequivocal evidence that naive CD4(+) T cells can be activated in a nonlymphoid organ. It also gives critical insight into how CD4(+) T cells specific for Ag expressed in the liver are recruited to participate in protective or pathological responses during hepatotropic infections and autoimmune liver disease.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células de Kupffer/imunologia , Hepatopatias/imunologia , Fígado/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Conservadores da Densidade Óssea/farmacologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Ácido Clodrônico/farmacologia , Células de Kupffer/patologia , Lipossomos , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA