Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Metab ; 36(7): 1534-1549.e7, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38878772

RESUMO

Tirzepatide, a glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist, has, in clinical trials, demonstrated greater reductions in glucose, body weight, and triglyceride levels compared with selective GLP-1R agonists in people with type 2 diabetes (T2D). However, cellular mechanisms by which GIPR agonism may contribute to these improved efficacy outcomes have not been fully defined. Using human adipocyte and mouse models, we investigated how long-acting GIPR agonists regulate fasted and fed adipocyte functions. In functional assays, GIPR agonism enhanced insulin signaling, augmented glucose uptake, and increased the conversion of glucose to glycerol in a cooperative manner with insulin; however, in the absence of insulin, GIPR agonists increased lipolysis. In diet-induced obese mice treated with a long-acting GIPR agonist, circulating triglyceride levels were reduced during oral lipid challenge, and lipoprotein-derived fatty acid uptake into adipose tissue was increased. Our findings support a model for long-acting GIPR agonists to modulate both fasted and fed adipose tissue function differentially by cooperating with insulin to augment glucose and lipid clearance in the fed state while enhancing lipid release when insulin levels are reduced in the fasted state.


Assuntos
Adipócitos , Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2 , Glucose/metabolismo , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nutrientes/metabolismo , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/agonistas , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
3.
Cell Metab ; 34(9): 1234-1247.e9, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35985340

RESUMO

With an increasing prevalence of obesity, there is a need for new therapies to improve body weight management and metabolic health. Multireceptor agonists in development may provide approaches to fulfill this unmet medical need. LY3437943 is a novel triple agonist peptide at the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R). In vitro, LY3437943 shows balanced GCGR and GLP-1R activity but more GIPR activity. In obese mice, administration of LY3437943 decreased body weight and improved glycemic control. Body weight loss was augmented by the addition of GCGR-mediated increases in energy expenditure to GIPR- and GLP-1R-driven calorie intake reduction. In a phase 1 single ascending dose study, LY3437943 showed a safety and tolerability profile similar to other incretins. Its pharmacokinetic profile supported once-weekly dosing, and a reduction in body weight persisted up to day 43 after a single dose. These findings warrant further clinical assessment of LY3437943.


Assuntos
Glucagon , Receptores dos Hormônios Gastrointestinais , Animais , Peso Corporal , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Controle Glicêmico , Camundongos , Camundongos Obesos , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Redução de Peso
4.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34003802

RESUMO

Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.


Assuntos
Tecido Adiposo Branco/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo Branco/patologia , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/patologia
5.
Biochem Biophys Res Commun ; 534: 498-503, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239171

RESUMO

We previously demonstrated that angiopoietin-like 8 (ANGPTL8) forms a localized complex with ANGPTL4 to reduce its lipoprotein lipase (LPL)-inhibitory activity and enable increased postprandial uptake of fatty acids (FA) into adipose tissue. Because prolonged cold exposure may increase adipose tissue FA uptake and decrease circulating triglycerides (TG) by reducing ANGPTL4 expression and inducing ANGPTL8 expression (and thus ANGPTL4/8 expression), we investigated the effect of temperature on ANGPTL4 and ANGPTL4/8 LPL-inhibitory activities in vitro. As the ANGPTL4(E40K) mutation results in decreased TG, we also characterized ANGPTL4(E40K) and ANGPTL4(E40K)/8 complex LPL-inhibitory activities. Interestingly, while ANGPTL3, ANGPTL3/8, and ANGPTL4 showed similar LPL inhibition at 37 °C and 22 °C, the already reduced LPL-inhibitory activity of ANGPTL4/8 at 37 °C was even more decreased at 22 °C. At 37 °C, ANGPTL4(E40K) manifested decreased LPL-inhibitory activity compared to ANGPTL4/8, while ANGPTL4(E40K)/8 had even further reduced potency. Remarkably, ANGPTL4/8, ANGPTL4(E40K), and ANGPTL4(E40K)/8 were each actually capable of stimulating LPL activity at 22 °C. Together, these results indicate that ANGPTL4/8 stimulation of LPL activity at low temperatures may represent an additional mechanism for further increasing adipose tissue FA uptake during cold exposure, beyond that already occurring due to decreased ANGPTL4 expression and increased ANGPTL8 expression. In addition, because ANGPTL4(E40K) has decreased LPL-inhibitory activity compared to ANGPTL4/8, our findings also suggest why ANGPTL4(E40K) carriers have decreased circulating TG levels.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Hormônios Peptídicos/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 8 Semelhante a Angiopoietina , Animais , Células CHO , Cricetulus , Ativação Enzimática , Células HEK293 , Humanos , Cinética , Mutação Puntual , Temperatura
6.
J Lipid Res ; 61(8): 1203-1220, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487544

RESUMO

Angiopoietin-like protein (ANGPTL)8 has been implicated in metabolic syndrome and reported to regulate adipose FA uptake through unknown mechanisms. Here, we studied how complex formation of ANGPTL8 with ANGPTL3 or ANGPTL4 varies with feeding to regulate LPL. In human serum, ANGPTL3/8 and ANGPTL4/8 complexes both increased postprandially, correlated negatively with HDL, and correlated positively with all other metabolic syndrome markers. ANGPTL3/8 also correlated positively with LDL-C and blocked LPL-facilitated hepatocyte VLDL-C uptake. LPL-inhibitory activity of ANGPTL3/8 was >100-fold more potent than that of ANGPTL3, and LPL-inhibitory activity of ANGPTL4/8 was >100-fold less potent than that of ANGPTL4. Quantitative analyses of inhibitory activities and competition experiments among the complexes suggested a model in which localized ANGPTL4/8 blocks the LPL-inhibitory activity of both circulating ANGPTL3/8 and localized ANGPTL4, allowing lipid sequestration into fat rather than muscle during the fed state. Supporting this model, insulin increased ANGPTL3/8 secretion from hepatocytes and ANGPTL4/8 secretion from adipocytes. These results suggest that low ANGPTL8 levels during fasting enable ANGPTL4-mediated LPL inhibition in fat tissue to minimize adipose FA uptake. During feeding, increased ANGPTL8 increases ANGPTL3 inhibition of LPL in muscle via circulating ANGPTL3/8, while decreasing ANGPTL4 inhibition of LPL in adipose tissue through localized ANGPTL4/8, thereby increasing FA uptake into adipose tissue. Excessive caloric intake may shift this system toward the latter conditions, possibly predisposing to metabolic syndrome.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Ácidos Graxos/metabolismo , Hormônios Peptídicos/metabolismo , Período Pós-Prandial , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Biomarcadores/metabolismo , Humanos
7.
Diabetes Obes Metab ; 22(12): 2451-2459, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33462955

RESUMO

AIM: To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. MATERIALS AND METHODS: Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. RESULTS: At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. CONCLUSIONS: Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fatores de Risco de Doenças Cardíacas , Humanos , Lipoproteínas , Fatores de Risco , Triglicerídeos
8.
Mol Metab ; 18: 3-14, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30473097

RESUMO

OBJECTIVE: A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM). METHODS: LY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice. A Phase 1, randomised, placebo-controlled, double-blind study was comprised of three parts: a single-ascending dose (SAD; doses 0.25-8 mg) and 4-week multiple-ascending dose (MAD; doses 0.5-10 mg) studies in healthy subjects (HS), followed by a 4-week multiple-dose Phase 1 b proof-of-concept (POC; doses 0.5-15 mg) in patients with T2DM (ClinicalTrials.gov no. NCT02759107). Doses higher than 5 mg were attained by titration, dulaglutide (DU) was used as a positive control. The primary objective was to investigate safety and tolerability of LY3298176. RESULTS: LY3298176 activated both GIP and GLP-1 receptor signaling in vitro and showed glucose-dependent insulin secretion and improved glucose tolerance by acting on both GIP and GLP-1 receptors in mice. With chronic administration to mice, LY3298176 potently decreased body weight and food intake; these effects were significantly greater than the effects of a GLP-1 receptor agonist. A total of 142 human subjects received at least 1 dose of LY3298176, dulaglutide, or placebo. The PK profile of LY3298176 was investigated over a wide dose range (0.25-15 mg) and supports once-weekly administration. In the Phase 1 b trial of diabetic subjects, LY3298176 doses of 10 mg and 15 mg significantly reduced fasting serum glucose compared to placebo (least square mean [LSM] difference [95% CI]: -49.12 mg/dL [-78.14, -20.12] and -43.15 mg/dL [-73.06, -13.21], respectively). Reductions in body weight were significantly greater with the LY3298176 1.5 mg, 4.5 mg and 10 mg doses versus placebo in MAD HS (LSM difference [95% CI]: -1.75 kg [-3.38, -0.12], -5.09 kg [-6.72, -3.46] and -4.61 kg [-6.21, -3.01], respectively) and doses of 10 mg and 15 mg had a relevant effect in T2DM patients (LSM difference [95% CI]: -2.62 kg [-3.79, -1.45] and -2.07 kg [-3.25, -0.88], respectively. The most frequent side effects reported with LY3298176 were gastrointestinal (vomiting, nausea, decreased appetite, diarrhoea, and abdominal distension) in both HS and patients with T2DM; all were dose-dependent and considered mild to moderate in severity. CONCLUSIONS: Based on these results, the pharmacology of LY3298176 translates from preclinical to clinical studies. LY3298176 has the potential to deliver clinically meaningful improvement in glycaemic control and body weight. The data warrant further clinical evaluation of LY3298176 for the treatment of T2DM and potentially obesity.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Receptores dos Hormônios Gastrointestinais/agonistas , Adulto , Animais , Apetite/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal , Diarreia/etiologia , Feminino , Polipeptídeo Inibidor Gástrico/efeitos adversos , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Incretinas/efeitos adversos , Incretinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Vômito/etiologia
9.
Oncotarget ; 8(55): 94619-94634, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212254

RESUMO

Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a critical role in mobilization and redistribution of immune cells and hematopoietic stem cells (HSCs). We evaluated effects of two CXCR4-targeting agents, peptide antagonist LY2510924 and monoclonal antibody LY2624587, on mobilizing HSCs and white blood cells (WBCs) in humans, monkeys, and mice. Biochemical analysis showed LY2510924 peptide blocked SDF-1/CXCR4 binding in all three species; LY2624587 antibody blocked binding in human and monkey, with minimal activity in mouse. Cellular analysis showed LY2624587 antibody, but not LY2510924 peptide, down-regulated cell surface CXCR4 and induced hematological tumor cell death; both agents have been shown to inhibit SDF-1/CXCR4 interaction and downstream signaling. In animal models, LY2510924 peptide induced robust, prolonged, dose- and time-dependent WBC and HSC increases in mice and monkeys, whereas LY2624587 antibody induced only moderate, transient increases in monkeys. In clinical trials, similar pharmacodynamic effects were observed in patients with advanced cancer: LY2510924 peptide induced sustained WBC and HSC increases, while LY2624587 antibody induced only minimal, transient WBC changes. These distinct pharmacodynamic effects in two different classes of CXCR4 inhibitors are clinically important and should be carefully considered when designing combination studies with immune checkpoint inhibitors or other agents for cancer therapy.

10.
Stem Cells ; 26(10): 2674-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18669909

RESUMO

Adipose stromal cells (ASC) are multipotential mesenchymal progenitor cells that are readily induced to undergo adipogenic differentiation, and we have recently demonstrated them to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. In this study we addressed the hypothesis that modulation of ASC fate within this perivascular niche can occur via interaction with endothelial cells (EC), which serve to modulate the adipogenic potential of ASC. To this end, we investigated contact as well as paracrine effects of EC on ASC adipogenesis, in two-dimensional coculture and via conditioned medium and analyzed mutual gene expression changes by real-time reverse transcription polymerase chain reaction (PCR). A significant decrease in adipogenic differentiation was observed in ASC when they were cocultured with EC but not control fibroblasts. This endothelial cell-specific effect was accompanied by increased expression of factors involved in Wnt signaling, most prominently Wnt1, Wnt4, and Wnt10a, which are well-known inhibitors of adipogenesis. Suppression of Wnt1 but not Wnt 10a or scrambled control short interfering RNA in cocultures partially reversed the endothelial cell effect, thus increasing adipogenic differentiation, suggesting a plausible role of Wnt1 ligand in modulation of adipogenesis by the vasculature. Furthermore, addition of recombinant Wnt ligand or the Wnt signaling agonist inhibited adipogenic differentiation of ASC in the absence of EC. In conclusion, these data define the relationship in adipose tissue between ASC and EC in the perivascular niche, in which the latter act to repress adipogenesis, thereby stabilizing vasculature. It is tempting to speculate that abnormal endothelial function may be associated with pathologic derepression of adipogenesis. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Células Endoteliais/citologia , Comunicação Parácrina , Transdução de Sinais , Células Estromais/citologia , Proteínas Wnt/metabolismo , Adipogenia , Adulto , Adesão Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados , Células Endoteliais/metabolismo , Feminino , Citometria de Fluxo , Inativação Gênica , Humanos , Células Estromais/metabolismo , Regulação para Cima , Proteínas Wnt/genética , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA