Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mov Disord ; 38(4): 604-615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788297

RESUMO

BACKGROUND: Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE: We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS: We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS: We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS: We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Neoplasias Pulmonares , Melanoma , Neoplasias Ovarianas , Doença de Parkinson , Neoplasias da Próstata , Humanos , Masculino , Feminino , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Melanoma/epidemiologia , Melanoma/genética , Fatores de Risco
2.
Mov Disord ; 37(9): 1929-1937, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810454

RESUMO

BACKGROUND: Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. OBJECTIVE: To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. METHODS: We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. RESULTS: At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95% confidence interval, 0.59-0.93, PInteraction  = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. CONCLUSIONS: Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética
3.
J Parkinsons Dis ; 12(1): 267-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34633332

RESUMO

BACKGROUND: Previous studies showed that lifestyle behaviors (cigarette smoking, alcohol, coffee) are inversely associated with Parkinson's disease (PD). The prodromal phase of PD raises the possibility that these associations may be explained by reverse causation. OBJECTIVE: To examine associations of lifestyle behaviors with PD using two-sample Mendelian randomisation (MR) and the potential for survival and incidence-prevalence biases. METHODS: We used summary statistics from publicly available studies to estimate the association of genetic polymorphisms with lifestyle behaviors, and from Courage-PD (7,369 cases, 7,018 controls; European ancestry) to estimate the association of these variants with PD. We used the inverse-variance weighted method to compute odds ratios (ORIVW) of PD and 95%confidence intervals (CI). Significance was determined using a Bonferroni-corrected significance threshold (p = 0.017). RESULTS: We found a significant inverse association between smoking initiation and PD (ORIVW per 1-SD increase in the prevalence of ever smoking = 0.74, 95%CI = 0.60-0.93, p = 0.009) without significant directional pleiotropy. Associations in participants ≤67 years old and cases with disease duration ≤7 years were of a similar size. No significant associations were observed for alcohol and coffee drinking. In reverse MR, genetic liability toward PD was not associated with smoking or coffee drinking but was positively associated with alcohol drinking. CONCLUSION: Our findings are in favor of an inverse association between smoking and PD that is not explained by reverse causation, confounding, and survival or incidence-prevalence biases. Genetic liability toward PD was positively associated with alcohol drinking. Conclusions on the association of alcohol and coffee drinking with PD are hampered by insufficient statistical power.


Assuntos
Café , Doença de Parkinson , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Fatores de Risco , Fumar/epidemiologia
4.
J Parkinsons Dis ; 12(1): 117-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602499

RESUMO

BACKGROUND: Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed "surgicogenomics". OBJECTIVE: We aimed to identify genetic variants associated with clinical heterogeneity in DBS outcome of Parkinson's disease (PD) patients that could then be applied clinically to target selection leading to improved surgical outcome. METHODS: Retrospective clinical data was extracted from 150 patient's charts. Each individual was genotyped using the genome-wide NeuroX array tailored to study neurologic diseases. Genetic data were clustered based on surgical outcome assessed by comparing pre- and post-operative scores of levodopa equivalent daily dose and axial impairment at one and five years post-surgery. Allele frequencies were compared between patients with excellent vs. moderate/poor outcomes grouped using a priori defined cut-offs. We analyzed common variants, burden of rare coding variants, and PD polygenic risk score. RESULTS: NeuroX identified 2,917 polymorphic markers at 113 genes mapped to known PD loci. The gene-burden analyses of 202 rare nonsynonymous variants suggested a nominal association of axial impairment with 14 genes (most consistent with CRHR1, IP6K2, and PRSS3). The strongest association with surgical outcome was detected between a reduction in levodopa equivalent daily dose and common variations tagging two linkage disequilibrium blocks with SH3GL2. CONCLUSION: Once validated in independent populations, our findings may be implemented to improve patient selection for DBS in PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Humanos , Levodopa , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/terapia , Estudos Retrospectivos , Resultado do Tratamento , Tripsina
5.
Neurobiol Aging ; 75: 223.e1-223.e10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30448004

RESUMO

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Doença por Corpos de Lewy/genética , Proteínas Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso de 80 Anos ou mais , Feminino , Genoma , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Nat Commun ; 9(1): 2794, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022074

RESUMO

Mutations in proteins like FUS which cause Amyotrophic Lateral Sclerosis (ALS) result in the aberrant formation of stress granules while ALS-linked mutations in other proteins impede elimination of stress granules. Repeat expansions in C9ORF72, the major cause of ALS, reduce C9ORF72 levels but how this impacts stress granules is uncertain. Here, we demonstrate that C9ORF72 associates with the autophagy receptor p62 and controls elimination of stress granules by autophagy. This requires p62 to associate via the Tudor protein SMN with proteins, including FUS, that are symmetrically methylated on arginines. Mice lacking p62 accumulate arginine-methylated proteins and alterations in FUS-dependent splicing. Patients with C9ORF72 repeat expansions accumulate symmetric arginine dimethylated proteins which co-localize with p62. This suggests that C9ORF72 initiates a cascade of ALS-linked proteins (C9ORF72, p62, SMN, FUS) to recognize stress granules for degradation by autophagy and hallmarks of a defect in this process are observable in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Proteína C9orf72/genética , Proteína FUS de Ligação a RNA/genética , Proteína Sequestossoma-1/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Arginina/metabolismo , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Embrião de Mamíferos , Células HeLa , Humanos , Metilação , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Cultura Primária de Células , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Estresse Fisiológico , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
7.
Neurobiol Aging ; 66: 181.e1-181.e2, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519717

RESUMO

Mutations in CHCHD2 and CHCHD10 were recently reported in a broad spectrum of neurodegenerative diseases, for example, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, or mitochondrial myopathy (MM). The aim of the study was to evaluate the prevalence of CHCHD2 and CHCHD10 mutations in Italian MM patients without mitochondrial DNA mutations. The coding regions of CHCHD2 and CHCHD10 were sequenced in 62 MM patients. None of the patients showed CHCHD2 mutations, whereas 1 sporadic MM patient carried a homozygous Pro96Thr substitution in CHCHD10. Muscle biopsy of this patient showed intracellular glycogen accumulation with cytochrome c oxidase negative and ragged red fibers. Our study suggests that the homozygous Pro96Thr mutation in CHCHD10 might be pathogenic but does not support a major role for CHCHD2 in MM pathogenesis.


Assuntos
Estudos de Associação Genética , Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Fatores de Transcrição/genética , Estudos de Coortes , Proteínas de Ligação a DNA , Complexo IV da Cadeia de Transporte de Elétrons , Glicogênio/metabolismo , Humanos , Itália , Miopatias Mitocondriais/metabolismo , Miopatias Mitocondriais/patologia , Músculos/metabolismo , Músculos/patologia
8.
Hum Mol Genet ; 26(21): 4142-4152, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973294

RESUMO

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease with paralysis resulting from dysfunction and loss of motor neurons. A common neuropathological finding is attrition of motor neuron dendrites, which make central connections vital to motor control. The chromatin remodelling complex, neuronal Brahma-related gene 1 (Brg1)-associated factor complex (nBAF), is critical for neuronal differentiation, dendritic extension and synaptic function. We have identified loss of the crucial nBAF subunits Brg1, Brg1-associated factor 53b and calcium responsive transactivator in cultured motor neurons expressing FUS or TAR-DNA Binding Protein 43 (TDP-43) mutants linked to familial ALS. When plasmids encoding wild-type or mutant human FUS or TDP-43 were expressed in motor neurons of dissociated spinal cord cultures prepared from E13 mice, mutant proteins in particular accumulated in the cytoplasm. Immunolabelling of nBAF subunits was reduced in proportion to loss of nuclear FUS or TDP-43 and depletion of Brg1 was associated with nuclear retention of Brg1 mRNA. Dendritic attrition (loss of intermediate and terminal dendritic branches) occurred in motor neurons expressing mutant, but not wild-type, FUS or TDP-43. This attrition was delayed by ectopic over-expression of Brg1 and was reproduced by inhibiting Brg1 activity either through genetic manipulation or treatment with the chemical inhibitor, (E)-1-(2-Hydroxyphenyl)-3-((1R, 4R)-5-(pyridin-2-yl)-2, 5-diazabicyclo[2.2.1]heptan-2-yl)prop-2-en-1-one, demonstrating the importance of Brg1 to maintenance of dendritic architecture. Loss of nBAF subunits was also documented in spinal motor neurons in autopsy tissue from familial amyotrophic sclerosis (chromosome 9 open reading frame 72 with G4C2 nucleotide expansion) and from sporadic cases with no identified mutation, pointing to dysfunction of nBAF chromatin remodelling in multiple forms of ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Montagem e Desmontagem da Cromatina/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Montagem e Desmontagem da Cromatina/genética , Citoplasma/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Mutação , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades Proteicas , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817800

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Proteínas de Ligação a Poli(A)/genética , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Saúde da Família , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Antígeno-1 Intracelular de Células T , Fatores de Tempo , Transfecção
10.
Brain ; 139(Pt 1): 86-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26525917

RESUMO

Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model, identifying DDX58 and MTHFSD as two TDP-43 targets that are misregulated in amyotrophic lateral sclerosis.


Assuntos
RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/genética , Animais , Proteína DEAD-box 58 , Humanos , Camundongos , Mutação
11.
Neurology ; 85(15): 1283-92, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26354989

RESUMO

OBJECTIVES: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). METHODS: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. RESULTS: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. CONCLUSIONS: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD.


Assuntos
Frequência do Gene/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos/genética , Idoso , Ataxinas/genética , Ataxinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Doença de Parkinson/epidemiologia , Fenótipo , Risco
12.
Acta Neuropathol ; 130(1): 49-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25788357

RESUMO

The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATG(Met85)), denoted here as Met(85)-TDP-35. Met(85)-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met(85)-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met(85)-TDP-35 in primary motor neurons resulted in the formation of Met(85)-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met(85)-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Morte Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , Neurônios Motores/metabolismo , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Proteínas de Ligação a DNA/genética , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Peso Molecular , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
13.
Am J Hum Genet ; 92(6): 981-9, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23731538

RESUMO

The G4C2 repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We tested the hypothesis that the repeat expansion causes aberrant CpG methylation near the G4C2 repeat, which could be responsible for the downregulation of gene expression. We investigated the CpG methylation profile by two methods using genomic DNA from the blood of individuals with ALS (37 expansion carriers and 64 noncarriers), normal controls (n = 76), and family members of 7 ALS probands with the expansion. We report that hypermethylation of the CpG island 5' of the G4C2 repeat is associated with the presence of the expansion (p < 0.0001). A higher degree of methylation was significantly correlated with a shorter disease duration (p < 0.01), associated with familial ALS (p = 0.009) and segregated with the expansion in 7 investigated families. Notably, we did not detect methylation for either normal or intermediate alleles (up to 43 repeats), bringing to question the current cutoff of 30 repeats for pathological alleles. Our study raises several important questions for the future investigation of large data sets, such as whether the degree of methylation corresponds to clinical presentation (ALS versus FTLD).


Assuntos
Esclerose Lateral Amiotrófica/genética , Ilhas de CpG , Metilação de DNA , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética , Idoso , Sequência de Bases , Estudos de Casos e Controles , Expansão das Repetições de DNA , Estudos de Associação Genética , Heterozigoto , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
14.
Mol Neurodegener ; 8: 10, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23414597

RESUMO

BACKGROUND: P73 belongs to the p53 family of cell survival regulators with the corresponding locus Trp73 producing the N-terminally distinct isoforms, TAp73 and DeltaNp73. Recently, two studies have implicated the murine Trp73 in the modulation in phospho-tau accumulation in aged wild type mice and in young mice modeling Alzheimer's disease (AD) suggesting that Trp73, particularly the DeltaNp73 isoform, links the accumulation of amyloid peptides to the creation of neurofibrillary tangles (NFTs). Here, we reevaluated tau pathologies in the same TgCRND8 mouse model as the previous studies. RESULTS: Despite the use of the same animal models, our in vivo studies failed to demonstrate biochemical or histological evidence for misprocessing of tau in young compound Trp73+/- + TgCRND8 mice or in aged Trp73+/- mice analyzed at the ages reported previously, or older. Secondly, we analyzed an additional mouse model where the DeltaNp73 was specifically deleted and confirmed a lack of impact of the DeltaNp73 allele, either in heterozygous or homozygous form, upon tau pathology in aged mice. Lastly, we also examined human TP73 for single nucleotide polymorphisms (SNPs) and/or copy number variants in a meta-analysis of 10 AD genome-wide association datasets. No SNPs reached significance after correction for multiple testing and no duplications/deletions in TP73 were found in 549 cases of AD and 544 non-demented controls. CONCLUSION: Our results fail to support P73 as a contributor to AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Benzofuranos , Western Blotting , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Quinolinas , Proteína Tumoral p73
15.
J Clin Neuromuscul Dis ; 14(1): 1-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922574

RESUMO

We studied 63 patients with myasthenia gravis (MG) requiring treatment with intravenous immunoglobulin, to determine if polymorphisms within the FCγR2A (rs1801274), FCγR2B (rs1050501), FCγR3A (rs396991), and FCγR3B (NA1/NA2) genes are correlated with response to treatment. There was no significant difference in any of the polymorphisms studied between responders and nonresponders. Patients with the FCγR2B-232I/I polymorphism had higher disease severity measured by the quatitative myasthenia gravis score (QMGS). There was no difference in the distribution of the FCγR2B-232 polymorphisms between the patients and 90 healthy controls. The finding of greater disease severity in patients with the FCγR2B-232I/I polymorphism requires confirmation in a larger population of patients with myasthenia gravis.


Assuntos
Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/genética , Fatores Imunológicos/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Polimorfismo Genético/genética , Receptores de IgG/genética , Adulto , Idoso , Distribuição de Qui-Quadrado , Eletromiografia , Potencial Evocado Motor/efeitos dos fármacos , Feminino , Humanos , Imunoglobulinas Intravenosas/genética , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/patologia , Índice de Gravidade de Doença , Resultado do Tratamento
16.
Neurobiol Aging ; 33(12): 2948.e1-2948.e10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22819134

RESUMO

The objectives of this study were to estimate frontotemporal dementia (FTD) prevalence, identify FTD-related mutations, and correlate FTD phenotype with mutations in a southern Italian population. The study population consisted of subjects ≥ 50 years of age residing in the Community of Biv. on January 1, 2004, and a door-to-door 2-phase design was used. Genetic and biochemical analyses were done on samples collected from 32 patients. Prevalence rates were 0.6 for Alzheimer's disease, 0.4 for vascular dementia (VD), 3.5 for FTD, 0.2 for Parkinson dementia, and 1.2 for unspecified dementia. Three GRN (1 known and 2 novel) mutations with reduced plasma protein levels were found associated to 3 distinct phenotypes (behavioral, affective, and delirious type). We report an unusually high FTD prevalence in the investigated population, but a low prevalence of Alzheimer's disease. We confirm the heterogeneity of FTD phenotype associated with different GRN mutations.


Assuntos
Demência Frontotemporal/epidemiologia , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Proteína C9orf72 , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Demência Vascular/epidemiologia , Demência Vascular/genética , Feminino , Demência Frontotemporal/sangue , Testes Genéticos , Inquéritos Epidemiológicos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Progranulinas , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas tau/metabolismo
17.
J Mol Biol ; 422(4): 556-574, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22687393

RESUMO

We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu. Starving cells of manganese or zinc, but not copper, causes shedding of the N1 fragment of PrP(C) and of the ectodomain of ZIP10. For ZIP10, this posttranslational biology is influenced by an interaction between its PrP-like ectodomain and a conserved metal coordination site within its C-terminal multi-spanning transmembrane domain. The transition metal starvation-induced cleavage of ZIP10 can be differentiated by an immature N-glycosylation signature from a constitutive cleavage targeting the same site. Data from this work provide a first glimpse into a hitherto neglected molecular biology that ties PrP to its LZT cousins and suggest that manganese or zinc starvation may contribute to the etiology of prion disease in mice.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metais/metabolismo , Príons/metabolismo , Elementos de Transição/metabolismo , Sequência de Aminoácidos , Animais , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Glicosilação , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Doenças Priônicas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteólise , Zinco/metabolismo
18.
Mol Cell Neurosci ; 47(3): 167-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21421050

RESUMO

TDP-43 is a predominantly nuclear DNA/RNA binding protein involved in transcriptional regulation and RNA processing. TDP-43 is also a component of the cytoplasmic inclusion bodies characteristic of amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). We have investigated the premise that abnormalities of TDP-43 in disease would be reflected by changes in processing of its target RNAs. To this end, we have firstly identified RNA targets of TDP-43 using UV-Cross-Linking and Immunoprecipitation (UV-CLIP) of SHSY5Y cells, a human neuroblastoma cell line. We used conventional cloning strategies to identify, after quality control steps, 127 targets. Results show that TDP-43 binds mainly to introns at UG/TG repeat motifs (49%) and polypyrimidine rich sequences (17.65%). To determine if the identified RNA targets of TDP-43 were abnormally processed in ALS versus control lumbar spinal cord RNA, we performed RT-PCR using primers designed according to the location of TDP-43 binding within the gene, and prior evidence of alternative splicing of exons adjacent to this site. Of eight genes meeting these criteria, five were differentially spliced in ALS versus control. This supports the premise that abnormalities of TDP-43 in ALS are reflected in changes of RNA processing.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA/metabolismo , Medula Espinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Linhagem Celular Tumoral , Clonagem de Organismos , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Imunoprecipitação/métodos , Masculino , Pessoa de Meia-Idade , RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Prog Neurobiol ; 93(3): 405-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21163327

RESUMO

Prion diseases are fatal neurodegenerative diseases of humans and animals which, in addition to sporadic and familial modes of manifestation, can be acquired via an infectious route of propagation. In disease, the prion protein (PrP(C)) undergoes a structural transition to its disease-causing form (PrP(Sc)) with profoundly different physicochemical properties. Surprisingly, despite intense interest in the prion protein, its function in the context of other cellular activities has largely remained elusive. We recently employed quantitative mass spectrometry to characterize the interactome of the prion protein in a murine neuroblastoma cell line (N2a), an established cell model for prion replication. Extensive bioinformatic analyses subsequently established an evolutionary link between the prion gene family and the family of ZIP (Zrt-, Irt-like protein) metal ion transporters. More specifically, sequence alignments, structural threading data and multiple additional pieces of evidence placed a ZIP5/ZIP6/ZIP10-like ancestor gene at the root of the PrP gene family. In this review we examine the biology of prion proteins and ZIP transporters from the viewpoint of a shared phylogenetic origin. We summarize and compare available data that shed light on genetics, function, expression, signaling, post-translational modifications and metal binding preferences of PrP and ZIP family members. Finally, we explore data indicative of retropositional origins of the prion gene founder and discuss a possible function for the prion-like (PL) domain within ZIP transporters. While throughout the article emphasis is placed on ZIP proteins, the intent is to highlight connections between PrP and ZIP transporters and uncover promising directions for future research.


Assuntos
Família Multigênica , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Príons/genética , Príons/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Cátions Bivalentes/metabolismo , Evolução Molecular , Humanos , Filogenia , Príons/química , Príons/classificação , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/química , Proteínas Repressoras/classificação
20.
Arch Neurol ; 68(3): 320-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059989

RESUMO

OBJECTIVES: To identify novel loci for late-onset Alzheimer disease (LOAD) in Caribbean Hispanic individuals and to replicate the findings in a publicly available data set from the National Institute on Aging Late-Onset Alzheimer's Disease Family Study. DESIGN: Nested case-control genome-wide association study. SETTING: The Washington Heights-Inwood Columbia Aging Project and the Estudio Familiar de Influencia Genetica de Alzheimer study. PARTICIPANTS: Five hundred forty-nine affected and 544 unaffected individuals of Caribbean Hispanic ancestry. INTERVENTION: The Illumina HumanHap 650Y chip for genotyping. MAIN OUTCOME MEASURE: Clinical diagnosis or pathologically confirmed diagnosis of LOAD. RESULTS: The strongest support for allelic association was for rs9945493 on 18q23 (P=1.7×10(-7)), but 22 additional single-nucleotide polymorphisms (SNPs) had a P value less than 9×10(-6) under 3 different analyses: unadjusted and stratified by the presence or absence of the APOE ε4 allele. Of these SNPs, 5 SNPs (rs4669573 and rs10197851 on 2p25.1; rs11711889 on 3q25.2; rs1117750 on 7p21.1; and rs7908652 on 10q23.1) were associated with LOAD in an independent cohort from the National Institute on Aging Late-Onset Alzheimer's Disease Family Study. We also replicated genetic associations for CLU, PICALM, and BIN1. CONCLUSIONS: Our genome-wide search of Caribbean Hispanic individuals identified several novel genetic variants associated with LOAD and replicated these associations in a white cohort. We also replicated associations in CLU, PICALM, and BIN1 in the Caribbean Hispanic cohort.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Clusterina/genética , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/psicologia , Apolipoproteínas E/genética , População Negra , Região do Caribe , Estudos de Coortes , Interpretação Estatística de Dados , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA