Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Br J Pharmacol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081110

RESUMO

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.

2.
Clin Transl Med ; 14(3): e1632, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515278

RESUMO

INTRODUCTION: Despite considerable therapeutic advances in the last 20 years, metastatic cancers remain a major cause of death. We previously identified prominin-2 (PROM2) as a biomarker predictive of distant metastases and decreased survival, thus providing a promising bio-target. In this translational study, we set out to decipher the biological roles of PROM2 during the metastatic process and resistance to cell death, in particular for metastatic melanoma. METHODS AND RESULTS: Methods and results: We demonstrated that PROM2 overexpression was closely linked to an increased metastatic potential through the increase of epithelial-to-mesenchymal transition (EMT) marker expression and ferroptosis resistance. This was also found in renal cell carcinoma and triple negative breast cancer patient-derived xenograft models. Using an oligonucleotide anti-sense anti-PROM2, we efficaciously decreased PROM2 expression and prevented metastases in melanoma xenografts. We also demonstrated that PROM2 was implicated in an aggravation loop, contributing to increase the metastatic burden both in murine metastatic models and in patients with metastatic melanoma. The metastatic burden is closely linked to PROM2 expression through the expression of EMT markers and ferroptosis cell death resistance in a deterioration loop. CONCLUSION: Our results open the way for further studies using PROM2 as a bio-target in resort situations in human metastatic melanoma and also in other cancer types.


Assuntos
Ferroptose , Melanoma , Humanos , Animais , Camundongos , Ferroptose/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana
3.
EMBO J ; 42(13): e112198, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278161

RESUMO

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Assuntos
Neoplasias da Próstata , Sódio , Masculino , Humanos , Sódio/metabolismo , Canais Iônicos/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743115

RESUMO

In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
5.
BMC Cancer ; 22(1): 570, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597921

RESUMO

BACKGROUND/AIM: To develop and validate a nebulizer device for anti-cancer research on pressurized intraperitoneal aerosol supply in a preclinical peritoneal metastases (PM) rat model. MATERIAL AND METHODS: For aerosol generation, an ultrasonic nebulizer (USN) was modified. Aerosol analyses were performed ex-vivo by laser diffraction spectrometry (LDS). Intraperitoneal (IP) 99mtechnetium sodium pertechnetate (99mTc) aerosol distribution and deposition were quantified by in-vivo single photon emission computed tomography (SPECT/CT) and compared to liquid IP instillation of equivalent volume/doses of 99mTc with and without capnoperitoneum. PM was induced by IP injection of HCT116-Luc2 human colon cancer cells in immunosuppressed RNU rats. Tumor growth was monitored by bioluminescence imaging (BLI), 18F-FDG positron emission tomography (PET) and tissues examination at necropsy. RESULTS: The USN was able to establish a stable and reproducible capnoperitoneum at a pressure of 8 to 10 mmHg. LDS showed that the USN provides a polydisperse and monomodal aerosol with a volume-weighted diameter of 2.6 µm. At a CO2 flow rate of 2 L/min with an IP residence time of 3.9 s, the highest drug deposition efficiency was found to be 15 wt.-%. In comparison to liquid instillation, nebulization showed the most homogeneous IP spatial drug deposition. Compared to BLI, 18F-FDG-PET was more sensitive to detect smaller PM nodules measuring only 1-2 mm in diameter. BLI, 18F-FDG PET and necropsy analyses showed relevant PM in all animals. CONCLUSIONS: The USN together with the PM rat model are suitable for robust and species-specific preclinical pharmacological studies regarding intraperitoneal delivery of pressurized aerosolized drugs and cancer research.


Assuntos
Neoplasias do Colo , Neoplasias Peritoneais , Aerossóis , Animais , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Fluordesoxiglucose F18 , Humanos , Nebulizadores e Vaporizadores , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/secundário , Ratos
6.
Cell Mol Life Sci ; 79(5): 254, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451651

RESUMO

Previous studies in our laboratory have reported that miR-222-3p was a tumor-suppressive miRNA in OC. This study aims to further understand the regulatory role of miR-222-3p in OC and provide a new mechanism for its prevention and treatment. We first found that miR-222-3p inhibited the migration and proliferation of OC cells. Then, we observed CDK19 was highly expressed in OC and inversely correlated with miR-222-3p. Besides, we observed that miR-222-3p directly binds to the 3'-UTR of CDK19 and inhibits CDK19 translation, thus inhibiting OC cell migration and proliferation in vitro and repressed tumor growth in vivo. We also observed the inhibitory effect of Hotair on miR-222-3p in OC. In addition, Hotair could promote the proliferation and migration of OC cells in vitro and facilitate the growth and metastasis of tumors in vivo. Moreover, Hotair was positively correlated with CDK19 expression. These results suggest Hotair indirectly up-regulates CDK19 through sponging miR-222-3p, which enhances the malignant behavior of OC. This provides a further understanding of the mechanism of the occurrence and development of OC.


Assuntos
Quinases Ciclina-Dependentes , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética
7.
Oncogene ; 41(21): 2920-2931, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411034

RESUMO

Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.


Assuntos
Neoplasias da Mama , Receptores Purinérgicos P2X4 , Autofagia/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
8.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36612049

RESUMO

Colorectal cancer (CRC) is the second leading cause of death worldwide, with 0.9 million deaths per year. The metastatic stage of the disease is identified in about 20% of cases at the first diagnosis and is associated with low patient-survival rates. Voltage-gated sodium channels (NaV) are abnormally overexpressed in several carcinomas including CRC and are strongly associated with the metastatic behavior of cancer cells. Acidification of the extracellular space by Na+/H+ exchangers (NHE) contributes to extracellular matrix degradation and cell invasiveness. In this study, we assessed the expression levels of pore-forming α-subunits of NaV channels and NHE exchangers in tumor and adjacent non-malignant tissues from colorectal cancer patients, CRC cell lines and primary tumor cells. In all cases, SCN5A (gene encoding for NaV1.5) was overexpressed and positively correlated with cancer stage and poor survival prognosis for patients. In addition, we identified an anatomical differential expression of SCN5A and SLC9A1 (gene encoding for NHE-1) being particularly relevant for tumors that originated on the sigmoid colon epithelium. The functional activity of NaV1.5 channels was characterized in CRC cell lines and the primary cells of colon tumors obtained using tumor explant methodologies. Furthermore, we assessed the performance of two new small-molecule NaV1.5 inhibitors on the reduction of sodium currents, as well as showed that silencing SCN5A and SLC9A1 substantially reduced the 2D invasive capabilities of cancer cells. Thus, our findings show that both NaV1.5 and NHE-1 represent two promising targetable membrane proteins against the metastatic progression of CRC.

9.
FASEB J ; 35(10): e21838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582061

RESUMO

Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, ß-catenin, fibronectin, and α5ß1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.


Assuntos
Remodelação das Vias Aéreas , Brônquios/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Calicreínas/metabolismo , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Brônquios/metabolismo , Caderinas/genética , Caderinas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Calicreínas/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais
10.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209614

RESUMO

The SCN4B gene, coding for the NaVß4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVß4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVß4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of ß-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navß4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Subunidades Proteicas/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Regulação para Baixo , Células Epiteliais/citologia , Feminino , Humanos , Mesoderma/metabolismo , Fenótipo , Proteólise , beta Catenina/metabolismo
12.
Purinergic Signal ; 17(3): 331-344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33987781

RESUMO

The P2X7 receptor, originally known as the P2Z receptor due to its distinctive functional properties, has a structure characteristic of the ATP-gated ion channel P2X receptor family. The P2X7 receptor is an important mediator of ATP-induced purinergic signalling and is involved the pathogenesis of numerous conditions as well as in the regulation of diverse physiological functions. Functional characterisations, in conjunction with site-directed mutagenesis, molecular modelling, and, recently, structural determination, have provided significant insights into the structure-function relationships of the P2X7 receptor. This review discusses the current understanding of the structural basis for the functional properties of the P2X7 receptor.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Líquido Extracelular/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Humanos , Estrutura Secundária de Proteína , Receptores Purinérgicos P2X7/genética
13.
iScience ; 24(4): 102270, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817575

RESUMO

Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.

14.
Eur J Med Chem ; 218: 113258, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813152

RESUMO

Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 µM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Front Biosci (Landmark Ed) ; 26(12): 1737-1745, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994186

RESUMO

It is well-known that extracellular ATP acts as an autocrine/paracrine signal to regulate cell functions by inducing intracellular Ca2+ signalling through its cognate receptors, namely, the ligand-gated ion channel P2X receptors that mediate Ca2+ influx and/or the Gq/11-coupled P2Y receptors that link to Ca2+ release from the ER. The reduction in ER Ca2+ can trigger further extracellular Ca2+ entry by activating the store-operated Ca2+ (SOC) channel. Mesenchymal stem cells (MSC) play an important role in the homeostasis of residing tissues and have promising applications in regenerative medicines. MSC can release ATP spontaneously or in response to diverse stimuli, and express multiple P2X and Gq/11-coupled P2Y receptors that participate in ATP-induced Ca2+ signalling and regulate cell function. There is increasing evidence to show the contribution of the SOC channel in ATP-induced Ca2+ signalling in MSC. In this mini-review, we discuss the current understanding of the expression of the SOC channel in MSC and its potential role in mediating ATP-induced Ca2+ signalling and regulation of MSC differentiation, proliferation and migration.


Assuntos
Células-Tronco Mesenquimais , Receptores Purinérgicos P2 , Trifosfato de Adenosina , Cálcio/metabolismo , Sinalização do Cálcio , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
16.
J Am Coll Surg ; 231(6): 704-712, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891798

RESUMO

BACKGROUND: In the COVID-19 crisis, laparoscopic surgery is in focus as a relevant source of bioaerosol release. The efficacy of electrostatic aerosol precipitation (EAP) and continuous aerosol evacuation (CAE) to eliminate bioaerosols during laparoscopic surgery was verified. STUDY DESIGN: Ex-vivo laparoscopic cholecystectomies (LCs) were simulated ± EAP or CAE in Pelvitrainer equipped with swine gallbladders. Release of bioaerosols was initiated by performing high-frequency electrosurgery with a monopolar electro hook (MP-HOOK) force at 40 watts (MP-HOOK40) and 60 watts (MP-HOOK60), as well as by ultrasonic cutting (USC). Particle number concentrations (PNC) of arising aerosols were analyzed with a condensation particle counter (CPC). Aerosol samples were taken within the Pelvitrainer close to the source, outside the Pelvitrainer at the working trocar, and in the breathing zone of the surgeon. RESULTS: Within the Pelvitrainer, MP-HOOK40 (6.4 × 105 cm-3) and MP-HOOK60 (7.3 × 105 cm-3) showed significantly higher median PNCs compared to USC (4.4 × 105 cm-3) (p = 0.001). EAP led to a significant decrease of the median PNCs in all 3 groups. A high linear correlation with Pearson correlation coefficients of 0.852, 0.825, and 0.759 were observed by comparing MP-HOOK40 (± EAP), MP-HOOK60 (± EAP), and USC (± EAP), respectively. During ex-vivo LC and CAE, significant bioaerosol contaminations of the operating room occurred. Ex-vivo LC with EAP led to a considerable reduction of the bioaerosol concentration. CONCLUSIONS: EAP was found to be efficient for intraoperative bioaerosol elimination and reducing the risk of bioaerosol exposure for surgical staff.


Assuntos
Aerossóis , Colecistectomia Laparoscópica/métodos , Eletrocirurgia/métodos , Controle de Infecções/métodos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Modelos Animais , Eletricidade Estática , Aerossóis/análise , Microbiologia do Ar , Animais , COVID-19/prevenção & controle , COVID-19/transmissão , Colecistectomia Laparoscópica/instrumentação , Eletrocirurgia/instrumentação , Técnicas In Vitro , Controle de Infecções/instrumentação , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Projetos Piloto , Suínos
17.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825056

RESUMO

The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.

18.
Sci Rep ; 10(1): 13350, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770034

RESUMO

The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Invasividade Neoplásica/patologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
Methods Mol Biol ; 2041: 261-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646495

RESUMO

P2X receptors (P2XRs) are ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP) and play a critical role in mediating ATP-induced purinergic signaling in physiological and pathological processes. Heterologous expression of P2XR in human embryonic kidney 293 (HEK293) cells and measurement of P2XR-mediated currents using patch-clamp recording technique have been widely used to study the biophysical and pharmacological properties of these receptors. Combination of electrophysiology with site-directed mutagenesis and structural information has shed light on the molecular basis for receptor activation and mechanisms of actions by receptor antagonists and modulators. It is anticipated that such methodologies will continue helping us to provide more mechanistic understanding of P2XRs and to test novel receptor antagonists and allosteric modulators for therapeutical purposes. In this chapter, we describe protocols of transiently or stably expressing the P2XR in HEK293 cells and measuring P2XR-mediated currents by using whole-cell recording.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Eletrofisiologia/métodos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp/métodos , Receptores Purinérgicos P2X/metabolismo , Animais , Células HEK293 , Humanos , Potenciais da Membrana , Receptores Purinérgicos P2X/genética , Transdução de Sinais
20.
Stem Cells ; 38(3): 410-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746084

RESUMO

In this study, we examined the Ca2+ -permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp-derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP-MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel-specific activator, elevated intracellular Ca2+ concentration. Yoda1-induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1-specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1-specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen-activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC-based translational applications.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos P2/metabolismo , Adulto , Movimento Celular , Criança , Feminino , Humanos , Masculino , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA