Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pediatr Nephrol ; 39(3): 749-760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37733098

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems. METHODS: We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders. RESULTS: Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere. CONCLUSIONS: The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.


Assuntos
Transtornos Cromossômicos , Doenças Renais Policísticas , Humanos , Estudos Transversais , Proteínas do Tecido Nervoso/genética , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Rim/patologia , Doenças Renais Policísticas/epidemiologia , Doenças Renais Policísticas/genética , Cromossomos Humanos Par 22
2.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598857

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Recém-Nascido , Camundongos , Proteínas de Transporte/metabolismo , Cílios/patologia , Rim/metabolismo , Mutação , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Serina/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
3.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33350388

RESUMO

Autism spectrum disorder (ASD) is a constellation of neurodevelopmental disorders with high phenotypic and genetic heterogeneity, complicating the discovery of causative genes. Through a forward genetics approach selecting for defective vocalization in mice, we identified Kdm5a as a candidate ASD gene. To validate our discovery, we generated a Kdm5a knockout mouse model (Kdm5a-/-) and confirmed that inactivating Kdm5a disrupts vocalization. In addition, Kdm5a-/- mice displayed repetitive behaviors, sociability deficits, cognitive dysfunction, and abnormal dendritic morphogenesis. Loss of KDM5A also resulted in dysregulation of the hippocampal transcriptome. To determine if KDM5A mutations cause ASD in humans, we screened whole exome sequencing and microarray data from a clinical cohort. We identified pathogenic KDM5A variants in nine patients with ASD and lack of speech. Our findings illustrate the power and efficacy of forward genetics in identifying ASD genes and highlight the importance of KDM5A in normal brain development and function.


Assuntos
Transtorno do Espectro Autista/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Adolescente , Animais , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Técnicas Genéticas , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação
5.
Genet Med ; 20(10): 1175-1185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469822

RESUMO

PURPOSE: To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS: Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION: These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.


Assuntos
Predisposição Genética para Doença , Síndrome de Noonan/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Exoma/genética , Feminino , Ligação Genética , Genótipo , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Síndrome de Noonan/patologia , Linhagem , Isoformas de Proteínas/genética , Splicing de RNA/genética , Irmãos
6.
Brain ; 139(Pt 3): 765-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917586

RESUMO

Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0-49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Autofagia/genética , Catarata/diagnóstico , Catarata/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Agenesia do Corpo Caloso/complicações , Animais , Proteínas Relacionadas à Autofagia , Catarata/complicações , Pré-Escolar , Estudos Transversais , Drosophila melanogaster , Feminino , Hipocampo/patologia , Humanos , Proteínas de Membrana Lisossomal , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/complicações , Estudos Retrospectivos , Proteínas de Transporte Vesicular
7.
Am J Med Genet A ; 164A(5): 1234-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24458798

RESUMO

We report on the natural history of a female with dominant omodysplasia, a rare osteochondrodysplasia with short stature, rhizomelia of the extremities (upper extremities more affected), and short first metacarpals. The proband had normal molecular analysis of the glypican 6 gene (GPC6), which was recently reported as a candidate for autosomal recessive omodysplasia. The findings in this patient were compared to other known and suspected cases of autosomal dominant omodysplasia. Mild rhizomelic shortening of the lower extremities has not been previously reported.


Assuntos
Úmero/anormalidades , Ossos Metacarpais/anormalidades , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Deleção Cromossômica , Cromossomos Humanos X , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Pessoa de Meia-Idade , Radiografia , Proteínas com Domínio T/genética
8.
Genet Med ; 16(4): 318-28, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24136618

RESUMO

PURPOSE: Phelan-McDermid syndrome is a developmental disability syndrome with varying deletions of 22q13 and varying clinical severity. We tested the hypothesis that, in addition to loss of the telomeric gene SHANK3, specific genomic regions within 22q13 are associated with important clinical features. METHODS: We used a customized oligo array comparative genomic hybridization of 22q12.3-terminus to obtain deletion breakpoints in a cohort of 70 patients with terminal 22q13 deletions. We used association and receiver operating characteristic statistical methods in a novel manner and also incorporated protein interaction networks to identify 22q13 genomic locations and genes associated with clinical features. RESULTS: Specific genomic regions and candidate genes within 22q13.2q13.32 were associated with severity of speech/language delay, neonatal hypotonia, delayed age at walking, hair-pulling behaviors, male genital anomalies, dysplastic toenails, large/fleshy hands, macrocephaly, short and tall stature, facial asymmetry, and atypical reflexes. We also found regions suggestive of a negative association with autism spectrum disorders. CONCLUSION: This work advances the field of research beyond the observation of a correlation between deletion size and phenotype and identifies candidate 22q13 loci, and in some cases specific genes, associated with singular clinical features observed in Phelan-McDermid syndrome. Our statistical approach may be useful in genotype-phenotype analyses for other microdeletion or microduplication syndromes.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 22/genética , Deficiências do Desenvolvimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Criança , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/epidemiologia , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino
9.
Am J Med Genet A ; 161A(11): 2741-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24166814

RESUMO

Malformations are significant contributions to childhood mortality and disability. Their co-occurrence with intellectual disability may compound the health burden, requiring additional evaluation and management measures. Overall, malformations of greater or lesser severity occur in at least some cases of almost half of the 153 XLID syndromes. Genitourinary abnormalities are most common, but tend to contribute little or no health burden and occur in only a minority of cases of a given XLID syndrome. Some malformations (e.g., lissencephaly, hydranencephaly, long bone deficiency, renal agenesis/dysplasia) are not amenable to medical or surgical intervention; others (e.g., hydrocephaly, facial clefting, cardiac malformations, hypospadias) may be substantially corrected.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Humanos , Síndrome
10.
Nat Genet ; 45(1): 83-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222957

RESUMO

Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.


Assuntos
Agenesia do Corpo Caloso/genética , Antígenos de Neoplasias/genética , Autofagia/genética , Catarata/genética , Genes Recessivos , Mutação , Proteínas Relacionadas à Autofagia , Biópsia , Consanguinidade , Exoma , Família , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal , Lisossomos/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Proteínas/metabolismo , Proteínas de Transporte Vesicular
11.
Am J Hum Genet ; 90(6): 1088-93, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22578326

RESUMO

Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia, ventriculomegaly, and arachnoid cysts are nearly invariant. Despite these striking brain malformations, individuals with CMS generally do not present with significant neurodevelopmental abnormalities, except for hearing loss. Homozygosity mapping and whole-exome sequencing of DNA from affected individuals in eight families (including the family in the first report of CMS) revealed four molecular variations (two single-base deletions, a nonsense mutation, and a canonical splice-site mutation) in the G protein-signaling modulator 2 gene, GPSM2, that underlie CMS. Mutations in GPSM2 have been previously identified in people with profound congenital nonsyndromic hearing loss (NSHL). Subsequent brain imaging of these individuals revealed frontal polymicrogyria, abnormal corpus callosum, and gray matter heterotopia, consistent with a CMS diagnosis, but no ventriculomegaly. The gene product, GPSM2, is required for orienting the mitotic spindle during cell division in multiple tissues, suggesting that the sensorineural hearing loss and characteristic brain malformations of CMS are due to defects in asymmetric cell divisions during development.


Assuntos
Agenesia do Corpo Caloso/genética , Cistos Aracnóideos/genética , Encefalopatias/genética , Encéfalo/anormalidades , Perda Auditiva Neurossensorial/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Adolescente , Adulto , Agenesia do Corpo Caloso/patologia , Cistos Aracnóideos/patologia , Encéfalo/patologia , Criança , Pré-Escolar , Saúde da Família , Feminino , Deleção de Genes , Perda Auditiva Neurossensorial/patologia , Homozigoto , Humanos , Lactente , Masculino , Análise de Sequência de DNA
12.
Am J Hum Genet ; 89(6): 767-72, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152678

RESUMO

Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Genes Dominantes , Luxações Articulares/congênito , Instabilidade Articular/genética , Cinesinas/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Criança , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Exoma , Expressão Gênica , Estudos de Associação Genética , Lâmina de Crescimento/metabolismo , Humanos , Luxações Articulares/genética , Cinesinas/química , Cinesinas/metabolismo , Masculino , Camundongos , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Tíbia/metabolismo
13.
J Med Genet ; 48(11): 761-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21984749

RESUMO

BACKGROUND: The clinical features of Phelan-McDermid syndrome (also known as 22q13 deletion syndrome) are highly variable and include hypotonia, speech and other developmental delays, autistic traits and mildly dysmorphic features. Patient deletion sizes are also highly variable, prompting this genotype-phenotype association study. METHODS: Terminal deletion breakpoints were identified for 71 individuals in a patient cohort using a custom-designed high-resolution oligonucleotide array comparative genomic hybridisation platform with a resolution of 100 bp. RESULTS: Patient deletion sizes were highly variable, ranging from 0.22 to 9.22 Mb, and no common breakpoint was observed. SHANK3, the major candidate gene for the neurologic features of the syndrome, was deleted in all cases. Sixteen features (neonatal hypotonia, neonatal hyporeflexia, neonatal feeding problems, speech/language delay, delayed age at crawling, delayed age at walking, severity of developmental delay, male genital anomalies, dysplastic toenails, large or fleshy hands, macrocephaly, tall stature, facial asymmetry, full brow, atypical reflexes and dolichocephaly) were found to be significantly associated with larger deletion sizes, suggesting the role of additional genes or regulatory regions proximal to SHANK3. Individuals with autism spectrum disorders (ASDs) were found to have smaller deletion sizes (median deletion size of 3.39 Mb) than those without ASDs (median deletion size 6.03 Mb, p=0.0144). This may reflect the difficulty in diagnosing ASDs in individuals with severe developmental delay. CONCLUSIONS: This genotype-phenotype analysis explains some of the phenotypic variability in the syndrome and identifies new genomic regions with a high likelihood for causing important developmental phenotypes such as speech delay.


Assuntos
Transtorno Autístico/genética , Proteínas de Transporte/genética , Transtornos Cromossômicos/genética , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Transtornos do Desenvolvimento da Linguagem/genética , Hipotonia Muscular/genética , Adolescente , Adulto , Transtorno Autístico/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 22/genética , Estudos de Coortes , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Genótipo , Humanos , Hibridização in Situ Fluorescente , Lactente , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Hipotonia Muscular/fisiopatologia , Mutação , Proteínas do Tecido Nervoso , Fenótipo , Índice de Gravidade de Doença
14.
J Pediatr Surg ; 46(1): 197-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21238666

RESUMO

BACKGROUND/PURPOSE: Given the number of individuals with Down syndrome (DS) and the high incidence of acute appendicitis (AA) in the general population, one would expect a certain number of patients with DS to develop AA. However, clinical experience suggests that AA is uncommon in patients with DS. This study was undertaken to determine whether the incidence of AA is significantly decreased in patients with DS. METHODS: A 13-year cross-sectional study of the state's hospital discharge database was performed to estimate the annual incidence of AA in patients with DS and in the general population. Estimates were generated for both pediatric (0-17 years) and adult (≥ 18 years) populations and were compared using 95% confidence intervals (CIs). In addition, the authors' hospital database was queried over a 10-year time frame. RESULTS: Incidence estimates of AA in children with DS and in the general pediatric population were 2.5 and 8.9 per 1000, respectively. In adults, the incidence estimates were 2.7 and 5.7 per 1000. CONCLUSIONS: The incidence of AA is markedly lower in patients with DS than in the general population. Although the biological basis for this remains unknown, this information is relevant in the evaluation of the acute abdomen in patients with DS.


Assuntos
Apendicite/epidemiologia , Síndrome de Down/epidemiologia , Abdome Agudo/diagnóstico , Abdome Agudo/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Apendicite/diagnóstico , Criança , Pré-Escolar , Comorbidade , Estudos Transversais , Diagnóstico Diferencial , Síndrome de Down/diagnóstico , Feminino , Humanos , Incidência , Lactente , Masculino , South Carolina/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA