Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38541159

RESUMO

Background and Objectives: Muscle atrophy occurs when protein degradation exceeds protein synthesis, resulting in imbalanced protein homeostasis, compromised muscle contraction, and a reduction in muscle mass. The incidence of muscle atrophy is increasingly recognized as a significant worldwide public health problem. The aim of the current study was to evaluate the effect of whey peptide (WP) on muscle atrophy induced by dexamethasone (DEX) in mice. Materials and Methods: C57BL/6 mice were divided into six groups, each consisting of nine individuals. WPs were orally administered to C57BL/6 mice for 6 weeks. DEX was administered for 5-6 weeks to induce muscle atrophy (intraperitoneal injection, i.p.). Results: Microcomputer tomography (CT) analysis confirmed that WP significantly increased calf muscle volume and surface area in mice with DEX-induced muscle atrophy, as evidenced by tissue staining. Furthermore, it increased the area of muscle fibers and facilitated greater collagen deposition. Moreover, WP significantly decreased the levels of serum biomarkers associated with muscle damage, kidney function, and inflammatory cytokines. WP increased p-mTOR and p-p70S6K levels through the IGF-1/PI3K/Akt pathway, while concurrently decreasing protein catabolism via the FOXO pathway. Furthermore, the expression of proteins associated with myocyte differentiation increased noticeably. Conclusions: These results confirm that WP reduces muscle atrophy by regulating muscle protein homeostasis. Additionally, it is believed that it helps to relieve muscle atrophy by regulating the expression of myocyte differentiation factors. Therefore, we propose that WP plays a significant role in preventing and treating muscle wasting by functioning as a supplement to counteract muscle atrophy.


Assuntos
Dexametasona , Soro do Leite , Camundongos , Animais , Dexametasona/efeitos adversos , Soro do Leite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peptídeos/efeitos adversos
2.
Biomed Res Int ; 2022: 5780964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572722

RESUMO

Renal fibrosis is a type of chronic kidney disease (CKD) induced by infiltration of inflammatory cells, myofibroblast accumulation, and ECM production in the kidney. From a long time ago, Corni Fructus (CF) is known to supplement the liver and kidney with its tepid properties. In this study, we investigated the renal protective mechanism of CF, which is known to supplement the kidney, in rat model of unilateral ureteral obstruction (UUO). After inducing UUO through surgery, the group was separated (n = 8) and the drug was administered for 2 weeks; normal rats (normal), water-treated UUO rats (control), CF 100 mg/kg-treated UUO rats (CF100), and CF 200 mg/kg-treated UUO rats (CF200). As a result of histopathological examination of kidney tissue with H&E, MT, and PAS staining, it was confirmed that the infiltration of inflammatory cells and the erosion of collagen were relatively decreased in the kidneys treated with CF. Also, CF significantly reduced the levels of MDA and BUN in serum. As a result of confirming the expression of the factors through western blotting, CF treatment significantly reduced the expression of NADPH oxidase and significantly regulated the AMPK/LKB1/NF-κB pathway associated with inflammation. In addition, it downregulated the expression of major fibrotic signaling factors, such as α-SMA, collagen I, MMP-2, and TIMP-1, and significantly regulated the TGF-ß1/Smad pathway, which is known as a major regulator of renal fibrosis. Taken together, these findings indicate that CF can alleviate renal fibrosis by regulating the TGF-ß1/Smad pathway through inhibition of oxidative stress in UUO.


Assuntos
Cornus , Nefropatias , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Fibrose , Rim/patologia , Nefropatias/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35027935

RESUMO

OBJECTIVE: Gastroesophageal reflux disease (GERD) is a gastrointestinal disorder in which stomach contents reflux into the esophagus, causing complications such as mucosal damage. GERD is a very common disease and is on the rise worldwide. The aim of this study was to assess the impact of a Scutellariae Radix and Citri Reticulatae Pericarpium mixture (SC) on esophageal mucosal injury in rats with chronic acid reflux esophagitis (CARE). METHODS: After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks: normal rats (Normal, n = 8), CARE-induced rats were treated with distilled water (Control, n = 8), CARE-induced rats were treated with vitamin E 30 mg/kg body weight (VitE, n = 8), CARE-induced rats were treated with SC 100 mg/kg body weight (SC100, n = 8), and CARE-induced rats were treated with SC 200 mg/kg body weight (SC200, n = 8). RESULTS: SC treatment significantly reduced the degree of esophageal mucosal damage, significantly reduced levels of MDA and MPO, and inhibited the activation of the NF-κB inflammatory pathway by activating the PPARγ/RXR pathway. In addition, SC treatment significantly regulated the expression of arachidonic acid-related proteins (COX-1, COX-2, and PGE2) and modulated the MMP/TIMP proteins in reflux esophagitis. CONCLUSION: Consequently, SC improved the damage to the esophageal mucosa. Also, the anti-inflammatory effects of the SC suggested the inhibition of NF-κB pathway through the activation of the PPARγ/RXR pathway, thereby reducing the expression of inflammation-related cytokines.

4.
Antioxidants (Basel) ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829709

RESUMO

Liver fibrosis, which means a sort of the excessive accumulation of extracellular matrices (ECMs) components through the liver tissue, is considered as tissue repair or wound-healing status. This pathological stage potentially leads to cirrhosis, if not controlled, it progressively results in hepatocellular carcinoma. Herein, we investigated the pharmacological properties and underlying mechanisms of Gardeniae Fructus (GF) against thioacetamide (TAA)-induced liver fibrosis of mice model. GF not only attenuated hepatic tissue oxidation but also improved hepatic inflammation. We further confirmed that GF led to ameliorating liver fibrosis by ECMs degradations. Regarding the possible underlying mechanism of GF, we observed GF regulated epigenetic regulator, Sirtuin 1 (SIRT1), in TAA-injected liver tissue. These alterations were well supported by SIRT1 related signaling pathways through regulations of its downstream proteins including, AMP-activated protein kinase (AMPK), p47phox, NADPH oxidase 2, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1, respectively. To validate the possible mechanism of GF, we used HepG2 cells with hydrogen peroxide treated oxidative stress and chronic exposure conditions via deteriorations of cellular SIRT1. Moreover, GF remarkably attenuated ECMs accumulations in transforming growth factor-ß1-induced LX-2 cells relying on the SIRT1 existence. Taken together, GF attenuated liver fibrosis through AMPK/SIRT1 pathway as well as Nrf2 signaling cascades. Therefore, GF could be a clinical remedy for liver fibrosis patients in the future.

5.
BMC Complement Med Ther ; 21(1): 269, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702240

RESUMO

BACKGROUND: The present study extensively aimed to evaluate the underlying mechanism of the immunomodulatory and anti-inflammatory effects of Phellinus linteus mycelium (PLM). METHODS: To assess whether PLM influences the production of markers related to inflammation, Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with PLM (50, 100, 200, and 500 µg/mL). Splenocyte, thymus, peritoneal exudate cells (PEC), and peripheral blood mononuclear cells (PBMC) were isolated from the Balb/c mice treated with Korean red ginseng or PLM once a day for 5 weeks. Moreover, all mice except normal mice were stimulated with 10% proteose peptone (PP) treated 3 days before the sacrifice and 2% starch treated 2 days before the sacrifice. Subsequently, the cytotropic substance was evaluated by using flow cytometry analysis and ELISA assay. RESULTS: PLM200 treatment significantly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and inhibited the release of proinflammatory cytokines such as interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α dose-dependently in the LPS-stimulated RAW264.7 cells. PLM200 supplementation showed a significant increase in IL-2, IL-12, and interferon (IFN)-γ production and upregulated the ratio of IFN-γ (T-helper type 1, Th1) to IL-4 (T-helper type 2, Th2) in splenocytes. After PLM200 treatment, the significant elevation of CD4+CD25+, CD4+&CD8+, and CD4+CD69+ treatment were detected in thymus. Moreover, CD4+ and CD4+CD69+ in PBMC and CD69+ in PEC were also shown in a significant increase. CONCLUSIONS: Taken together, these results showed an immunomodulatory effect of PLM about an elevated INF-γ/IL4 ratio, as an index of Th1/Th2, as well as the anti-inflammatory effect in the LPS-stimulated RAW264.7 cells. Therefore, our findings demonstrate that PLM possesses immunostimulatory and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Agentes de Imunomodulação/farmacologia , Extratos Vegetais/farmacologia , Animais , Austrália , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Phellinus , Células RAW 264.7/efeitos dos fármacos , República da Coreia
6.
Biomed Res Int ; 2021: 8854945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532497

RESUMO

Gastroesophageal reflux disease (GERD) is induced by the reflux of stomach contents or gastric acid, pepsin into the esophagus for prolonged periods of time due to defection of the lower esophageal sphincter. Reflux esophagitis is a disease found in less than 50% of GERD patients. This study is aimed at evaluating the protective effect of Curcumae longae Rhizoma 30% EtOH extract (CLR) in acute reflux esophagitis (ARE) rats. CLR measured antioxidant activity through in vitro experiments. Based on the results, we performed experiments in vivo. Before 90 min ARE induction, CLR was administered orally by concentration. ARE was derived by linking the metastatic junction between pylorus and forestomach and corpus in Sprague-Dawley rats. And rats were sacrificed 5 h after surgery. We analyzed the expression of antioxidant and inflammatory-related markers by western blot and observed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), reactive oxygen species (ROS), peroxynitrite (ONOO-), and thiobarbituric acid reactive substance (TBARS). The administration of CLR reduced esophagus tissue damage in rats with acute reflux esophagitis and decreased the elevated ALT, AST, ROS, ONOO-, and TBARS. In addition, CLR effectively increased antioxidant-related factors and reduced inflammatory protein. Overall, these results suggest that CLR would be used as a therapeutic material in protection and treatment for ARE. Overall, CLR treatment informed that markedly ameliorated inactivation of NF-κB led to the inhibition of the expressions of proinflammatory proteins. These results suggest that CLR would be used as a therapeutic material in protection and treatment for ARE.


Assuntos
Esofagite Péptica , Esôfago , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Curcuma , Esofagite Péptica/metabolismo , Esofagite Péptica/patologia , Esôfago/efeitos dos fármacos , Esôfago/patologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557332

RESUMO

Since 2016, the invasive halophyte Spartina anglica has been colonizing mudflats along the western coast of South Korea. In order to minimize costs on S. anglica expansion management and waste-treatment of collected biomass, the potential application of the collected biomass of S. anglica was investigated. Ethanolic extracts and subfractions thereof (hexanes, methylene chloride, ethyl acetate, 1-butanol, and water-soluble) of the aerial and belowground parts of S. anglica showed free radical-scavenging [2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)], tyrosinase inhibitory, and pancreatic lipase inhibitory activities. An ethyl acetate fraction derived from aerial parts (EA-a) showed the most potent radical-scavenging and pancreatic lipase inhibitory activities, whereas tyrosinase inhibition was mainly observed in the methylene chloride soluble fractions (MC-bg) and other lipophilic fractions (ethyl acetate and hexanes layers) obtained from belowground parts. The major EA-a compound isolated and identified was 1,3-di-O-trans-feruloyl quinic acid (1) based on spectroscopic analysis, whereas the two major MC-bg compounds were identified as p-hydroxybenzaldehyde (2) and N-trans-feruloyltyramine (3). Compounds 1 and 3 scavenged both DPPH and ABTS radicals, whereas 1 and 2 inhibited pancreatic lipase activity. These results indicate that extracts and fractions of S. anglica have antioxidant, anti-obesity, and whitening properties with potential pharmaceutical, cosmeceutical, and functional food applications.

8.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081281

RESUMO

A 'remedy for all' natural product widely known in the Korean Peninsula is called Panax Ginseng Meyer. Globalization represents a persistent risk to the ozone layer, leading to bountiful amounts of Ultra-Violet B beams (UVB). The variety in human skin hues is ascribed to the characteristic color called Melanin. However, Melanin overproduction due to UVB beams promotes skin staining and tumorigenesis, a process called photo aging, which damages skin quality. To assess the effects of Korean Red Ginseng Oil (KGO) on photo aging, the murine melanoma cell lines B16/F10 were used in vitro and HRM-2 hairless mice exposed to UVB were studied in vivo. Our results revealed that KGO reduced tyrosinase activity and melanin production in B16/F10 cells along with the suppression of upstream factors involved in the melanin production pathway, both transcriptionally and transitionally. In the in vivo studies, KGO suppressed the expression of Matrix Metalloproteinase (MMP) and Interleukins along with a reduction of depth in wrinkle formation and reduced collagen degradation. Moreover, the feed intake and feed efficiency ratio that decreased as a result of UVB exposure was also improved by KGO treatment. In light of our results, we conclude that KGO can have considerable benefits due to its various properties of natural skin enhancement.


Assuntos
Carcinogênese/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Panax/química , Óleos de Plantas/farmacologia , Animais , Carcinogênese/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Humanos , Melaninas/biossíntese , Melaninas/efeitos da radiação , Camundongos , Camundongos Pelados , Ozônio/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Pele/efeitos dos fármacos , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
9.
J Ginseng Res ; 44(3): 496-505, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372872

RESUMO

BACKGROUND: Panax ginseng is a marvelous herbal remedy for all ailments of body. That may be why it is called Panax, which means "cure for all". Melanin is a pigment that gives color to our skin; however, increased melanin production can lead to tumor formation. Human exposure to ultraviolet B radiation has increased extensively owing to the increased sunlight due to global warming. Consequently, a phenomenon called photoaging has been observed for all skin colors and types. As a result of this phenomenon, a set of enzymes called matrix metalloproteinases, which serve as degradation enzymes for extracellular matrix proteins, mainly collagen, is increased, causing depletion of collagen and resulting in early wrinkle formation. METHODS: Therefore, in our study, we used the murine melanoma cell line B16/F10 to study the inhibition of melanogenesis by Korean Red Ginseng (KRG) extract in vitro and HRM-2 hairless mice exposed to artificial ultraviolet B to examine the efficacy of KRG in vivo. We prepared a 3% red ginseng extract cream and evaluated its effects on human skin. RESULTS: Our results demonstrated that KRG induced potent suppression of tyrosinase activity and melanin production in B16/F10 cells; moreover, it reduced the transcription and translation of components involved in the melanin production pathway. In the in vivo experiments, KRG potently suppressed the expression of matrix metalloproteinases, reduced wrinkle formation, and inhibited collagen degradation. On human skin, ginseng cream increased skin resilience and skin moisture and enhanced skin tone. CONCLUSION: Therefore, we conclude that KRG is an excellent skin whitening and antiaging product.

10.
Nutrients ; 10(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439531

RESUMO

Although Aster glehni is a common dietary herb that has various bioactivities, including anti-diabetic, anti-adipogenic, and anti-inflammatory effects, A. glehni has not been studied in colon cancer. Therefore, we hypothesized the chemopreventive effects of an ethanol extract of A. glehni (AG) on azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-associated cancer (CAC) in mice. In this study, we found that treatment with AG significantly attenuated the AOM/DSS-induced enlargement of the spleen and shortening of the colon. In addition, colonic tumor formation, colonic damage, and increased muscle thickness were significantly reduced in AOM/DSS-induced mice fed AG. Treatment with AG also reduced intestinal interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production and decreased inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression in mice with AOM/DSS-induced CAC. Furthermore, AG reduced nuclear factor (NF)-κB activation via phosphorylation and degradation of inhibitor of kappa Bα (IκBα), leading to inhibition of NF-κB p65 nuclear translocation. It also downregulated the expression of NF-κB-related proteins, including the B-cell lymphoma 2 (Bcl-2) family and inhibitors of apoptosis proteins (IAPs), in mice with AOM/DSS-induced CAC. Taken together, these findings suggest that the treatment with AG inhibited colitis-associated colon carcinogenesis in mice, and this chemopreventive effect was strongly mediated by suppression of the NF-κB signaling pathway, indicating that AG could be a promising protective agent against CAC.


Assuntos
Anticarcinógenos/uso terapêutico , Aster , Colite/complicações , Colo/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Inflamação/complicações , Fitoterapia , Animais , Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Azoximetano , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Sulfato de Dextrana , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Med Food ; 20(12): 1214-1221, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29243969

RESUMO

Oligonol, a polyphenol derived from lychee fruit, is produced by an oligomerization process that converts high-molecular-weight polyphenol polymers into low-molecular-weight oligomers. Evidence suggests that oligonol exerts its beneficial effects based on antioxidant and anti-inflammatory properties. This study was the first to investigate the antioxidative and anti-inflammatory effects of oligonol on gastroesophageal inflammatory models: surgically induced acute reflux esophagitis (RE) and gastric ulcer (GU) induced by HCl/ethanol. In the in vitro study, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) radical scavenging assays were performed to determine the antioxidant activity of oligonol. The experimental groups were each composed of normal, vehicle, and oligonol groups. RE rats and GU mice were treated orally with oligonol (100 mg/kg bw) or distilled water as a vehicle (n = 8 for each group). Oligonol exhibited potent free radical-scavenging capacities for DPPH and ABTS radicals, activities that were similar to those of ascorbic acid. The in vivo study revealed that oligonol consumption significantly prevented RE and GU formation and decreased the gross mucosal injury from oxidative stress. Oligonol decreased the reactive oxygen species levels and elevated levels of both inflammatory mediators and cytokines (p-IκB, NF-κBp65, COX-2, iNOS, TNF-α, and IL-1ß) in the RE and GU models. Oligonol had a protective effect against oxidative stress by regulating antioxidant enzyme (superoxide dismutase, catalase, and GPx-1/2) activities in GU mice. Oligonol has potential as a preventive and therapeutic agent for gastroesophageal inflammatory diseases, including RE and GU.


Assuntos
Catequina/análogos & derivados , Esofagite Péptica/tratamento farmacológico , Litchi/química , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Úlcera Gástrica/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Catequina/administração & dosagem , Catequina/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Esofagite Péptica/genética , Esofagite Péptica/metabolismo , Etanol/efeitos adversos , Frutas/química , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/genética , Úlcera Gástrica/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Chin Med ; 45(6): 1233-1252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28830212

RESUMO

The present study evaluated the effects of heat-processed Scutellariae Radix (Scutellaria baicalensis) on lipopolysaccharide (LPS)-induced liver injury in mice. Scutellariae Radix heat-processed at 160[Formula: see text]C or 180[Formula: see text]C was orally administered at a dose of 100 mg/kg body weight for three days before the intraperitoneal injection of LPS, and the effects were compared with those of vehicle-treated LPS administered to control mice. The administration of Scutellariae Radix decreased the elevated serum monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), reactive oxygen species (ROS), nitrite/nitrate, peroxynitrite, and hepatic functional parameters, and reduced the increased ROS in the liver. The augmented expressions of hepatic oxidative stress and inflammation-related proteins, phospho-p38, phosphorylated extracellular signal-regulated kinase, phosphorylated c-Jun N-terminal kinase, nuclear factor-[Formula: see text] B p65, activator protein-1, cyclooxygenase-2, inducible nitric oxide synthase, MCP-1, intercellular adhesion molecule-1, tumor necrosis factor-[Formula: see text], and IL-6, were downregulated by the heat-processed Scutellariae Radix. Hematoxylin-eosin staining showed that the increased hepatocellular damage in the liver of LPS-treated mice improved with the administration of heat-processed Scutellariae Radix. Overall, the ameliorative effects of Scutellariae Radix were superior to those when heat-processed at 180[Formula: see text]C. Our results indicate that heat-processed Scutellariae Radix acts as an anti-inflammatory agent by ameliorating oxidative stress in the liver of mice with LPS-induced liver injury.


Assuntos
Anti-Inflamatórios , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Temperatura Alta , Lipopolissacarídeos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Scutellaria baicalensis/química , Administração Oral , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Nitritos/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
13.
World J Gastroenterol ; 23(25): 4644-4653, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740353

RESUMO

AIM: To evaluate the anti-apoptotic effect of banhasasim-tang (BHSST) on chronic acid reflux esophagitis (CARE) using a rat model. METHODS: A surgically-induced CARE model was established in Sprague-Dawley rats. The modeled rats were divided into a treatment group or untreated group, and given BHSST (1 g/kg body weight per day) or water, respectively, for 15 consecutive days (n = 7 each group). Changes in expression of proteins related to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and apoptosis were assessed by western blotting. Changes in esophageal pathology were analyzed by gross and histological examinations. RESULTS: The CARE exposure modeled rats showed increased levels of the NADPH oxidase subunit, NOX4 and p47phox in the esophagus. The BHSST treatment completely resolved these CARE-related increases. The CARE rats also showed markers of cytokine stress, including elevated levels of TNF-α and reactive oxygen species as well as of the consequent increase in JNK activation, and subsequent decrease in pro-survival gene expression, such as of Bcl-2. BHSST treatment resolved the CARE-related changes. BHSST also exerted an anti-apoptotic effect, as evidenced by altered expression of the apoptosis-related genes for bax, cytochrome c, and caspase 3. Finally, the BHSST treatment markedly ameliorated the CARE-related esophageal mucosal ulcerations. CONCLUSION: In the rat model of CARE, BHSST can suppress development of esophageal mucosal ulceration via regulation of reactive oxygen species-dependent apoptosis.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Esofagite Péptica/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Fitoterapia/métodos , Plantas Medicinais/química , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patologia , Esofagite Péptica/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Food Funct ; 8(7): 2611-2620, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28695925

RESUMO

Although Aster glehni has been reported to prevent diabetes mellitus, hypercholesterolemia, insomnia, and cardiovascular disease, the anti-inflammatory effect of Aster glehni in colonic tissue remains unclear. In this study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of an ethanol extract of Aster glehni (AG) in mice with dextran sulfate sodium (DSS)-induced colitis. AG significantly attenuated DSS-induced DAI scores, which implied that it suppressed diarrhea, gross bleeding, and the infiltration of immune cells. AG administration also effectively prevented shortening of the colon length and enlargement of the spleen size. Histological examinations indicated that AG suppressed colonic damage and the thickness of the muscle layer induced by DSS. In addition, AG inhibited the production of pro-inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, and the protein expression of COX-2 and iNOS in mice with DSS-induced colitis. Administration with AG suppressed the activation of nuclear factor-κB (NF-κB) including the nuclear translocation of the p65 NF-κB subunit, phosphorylation and degradation of IκB-α. Taken together, these findings suggest that the anti-inflammatory effects of AG are mainly related to the inhibition of the expressions of inflammatory mediators via NF-κB inactivation, and support its possible therapeutic application in colitis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aster/química , Colite/tratamento farmacológico , NF-kappa B/imunologia , Extratos Vegetais/administração & dosagem , Animais , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , NF-kappa B/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Mar Drugs ; 15(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617322

RESUMO

The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.


Assuntos
Cartilagem/química , Sulfatos de Condroitina/farmacologia , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Rajidae , Animais , Peso Corporal/efeitos dos fármacos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator de Necrose Tumoral alfa/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Biomed Res Int ; 2017: 7157212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349065

RESUMO

The present study was conducted to evaluate both antioxidant and anti-inflammatory activity of Banhasasim-tang (BHSST) on chronic acid reflux esophagitis (CRE) model. Rat CRE model was established operatively and then treated with BHSST (1 g/kg body weight per day) for 15 days Esophageal pathological changes were analyzed using macroscopic examination and hematoxylin/eosin staining. The antioxidant and inflammatory protein levels were determined using Western blotting. The administration of BHSST significantly reduced both the overexpression of serum reactive oxygen species (ROS) and an excessive formation of thiobarbituric acid-reactive substances (TBARS) in esophagus tissue. Thus, the severity of esophageal ulcer was lower in BHSST treated rats than control rats on the gross and histological evaluation. Nuclear factor-erythroid 2-related factor 2 (Nrf2) led to the upregulation of antioxidant enzyme including SOD, GPx-1/2, and HO-1 by binding to antioxidant response element (ARE). Moreover, BHSST administration markedly reduced the expression of inflammatory proteins through mitogen-activated protein kinase- (MAPK-) related signaling pathways and decreased significantly the protein expressions of inflammatory mediators and cytokines by inhibition of nuclear factor-kappa B (NF-κB) activation. Taken together, these results support the fact that BHSST administration can suppress the development of esophageal mucosal ulcer via regulating inflammation through the activation of the antioxidant pathway.


Assuntos
Antioxidantes/administração & dosagem , Refluxo Gastroesofágico/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Ciclo-Oxigenase 2/biossíntese , Modelos Animais de Doenças , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/metabolismo , Esôfago/efeitos dos fármacos , Esôfago/patologia , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/biossíntese , Humanos , Inflamação/genética , Inflamação/patologia , Fator 2 Relacionado a NF-E2/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Food Funct ; 7(7): 3056-3063, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248500

RESUMO

We have identified the effects of oligonol, a low-molecular polyphenol derived from lychee fruit, on diabetes-induced pancreatic damage via oxidative stress. Oligonol was orally administered at 10 or 20 mg (kg d)(-1) for 10 days to streptozotocin (STZ)-induced diabetic rats, and we assessed the changes in the serum glucose and insulin levels, as well as those of body weight and food and water consumption. In addition, analyses of the weight, insulin content, reactive oxygen species (ROS) level, and western blots of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4 (Nox-4), p22(phox), p47(phox), phosphor-c-Jun N-terminal kinase (p-JNK), Bax, cytochrome c, caspase 3, pancreatic-duodenal homeobox (PDX-1) and cyclin E were also performed in the pancreas. However, these unfavorable outcomes under diabetes were reversed by oligonol administration. Oligonol treatment led to significantly attenuated histological damage in the pancreas. In conclusion, this study suggests that oligonol protects the pancreas from Bax and PDX-1 via oxidative stress for the prevention or delaying of diabetes mellitus.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Litchi/química , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Fenóis/farmacologia , Animais , Glicemia/metabolismo , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Frutas/química , Regulação da Expressão Gênica , Insulina/sangue , Masculino , Peso Molecular , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Pâncreas/citologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
18.
BMC Complement Altern Med ; 16: 63, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888412

RESUMO

BACKGROUND: Water extract from the root of Allium hookeri (AH) shows anti-inflammatory, antioxidant, and free radical scavenging effects. In this study, the ameliorating effects of AH on oxidative stress-induced inflammatory response and ß-cell damage in the pancreas of streptozotocin (STZ)-induced type 1 diabetic rats were investigated. METHODS: AH (100 mg/kg body weight/day) was orally administered every day for 2 weeks to STZ-induced diabetic rats. After the final administration of AH, biochemical parameters including glucose, insulin, reactive oxygen species levels, and protein expressions related to antioxidant defense system in the pancreas of STZ-induced diabetic rats. RESULTS: The diabetic rats showed loss of body weight and increased pancreatic weight, while the oral administration of AH attenuated body and pancreatic weight changes. Moreover, the administration of AH caused a slightly decrease in the serum glucose level and a significant increase in the serum and pancreatic insulin levels in the diabetic rats. AH also significantly reduced the enhanced levels of reactive oxygen species, oxidative stress biomarker, in the serum and pancreas. The diabetic rats exhibited a down-regulation of the protein expression related to antioxidant defense system in the pancreas, but AH administration significantly up-regulated the expression of the heme oxygenase-1 (HO-1). Furthermore, AH treatment was reduced the overexpression of nuclear factor-kappa B (NF-кB)p65 and NF-кBp65-induced inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. In addition, AH treatment was less pancreatic ß-cell damaged compared with those of the diabetic rats. CONCLUSION: These results provide important evidence that AH has a HO-1 activity on the oxidative stress conditions showing pancreato-protective effects against the development of inflammation in the diabetic rats. This study provides scientific evidence that AH protects the inflammatory responses by modulated NF-кBp65 signaling pathway through activation of HO-1 in the pancreas of STZ-induced diabetic rats.


Assuntos
Allium , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Raízes de Plantas , Allium/química , Animais , Peso Corporal , Diabetes Mellitus Experimental/patologia , Ingestão de Alimentos , Mediadores da Inflamação/metabolismo , Insulina/sangue , Células Secretoras de Insulina/patologia , Tamanho do Órgão , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Raízes de Plantas/química , Substâncias Protetoras/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Food Sci Biotechnol ; 25(Suppl 1): 133-141, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30263498

RESUMO

Skin is composed of multiple layers, including the epidermis, dermis, and hypodermis. Although several biological activities of fisetin have been reported, beneficial effects and the functions of fisetin in skin remain unclear. B16F10 melanoma cells, human skin fibroblasts, and 3T3-L1 cells were used to examine the beneficial effects of fisetin in skin health. α-MSH- and IBMX-induced melanosis in B16F10 melanoma cells was inhibited by fisetin treatment, which also enhanced mRNA expression levels of skin fibril-related genes via the CCN2/TGF-ß signaling pathway. Decreased intracellular lipid accumulation via down-regulation of transcriptional factors through activation of the CCN2/TGF-ß signaling pathway was observed. A novel function of fisetin in skin health via down-regulation of melanosis and adipogenesis, and up-regulation of skin fibril-related genes was observed. Evidence for development of nutri-cosmetics for skin health is presented.

20.
Drug Discov Ther ; 9(1): 13-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25788048

RESUMO

Oligonol is a phenolic product derived from lychee fruit extract containing catechin-type monomers and oligomers of proanthocyanidins, produced by a manufacturing process which converts polyphenol polymers into oligomers. These proanthocyanidins have been reported to exhibit beneficial bioactivities in many studies, and so oligonol, a rich source of polyphenol, is expected to show favorable effects on various chronic diseases. This article summarizes recent work whether oligonol has an ameliorative effect on diabetic indices and renal disorders associated with gluco-lipotoxicity-mediated oxidative stress, inflammation, and apoptosis in db/db mice with diabetes. Oligonol was able to improve diabetic indices, prevent the development of diabetic renal disease, and preserve renal cells and the renal morphological structure via the attenuation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced oxidative stress, inhibition of advanced glycation endproduct (AGE) generation, and prevention of apoptosis-induced cell death in db/db mice, being independent of changes in the body weight or serum glucose levels. The present study provides important evidence that oligonol exhibits a pleiotropic effect, representing renoprotective effects against the development of diabetic complications in type 2 diabetic db/db mice.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Litchi/química , Fenóis/farmacologia , Animais , Apoptose , Catequina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/fisiologia , Rim/patologia , Metabolismo dos Lipídeos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA