Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biomol Ther (Seoul) ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370730

RESUMO

Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.

2.
Cell Biol Toxicol ; 40(1): 71, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147926

RESUMO

The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.


Assuntos
Cocaína , DNA Mitocondrial , Hipuratos , Hepatopatias Alcoólicas , Proteínas de Membrana , Transdução de Sinais , Animais , Cocaína/farmacologia , Cocaína/toxicidade , Transdução de Sinais/efeitos dos fármacos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Camundongos , Hipuratos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
3.
Am J Pathol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179201

RESUMO

Casein kinase 1 epsilon (CK1ε), a member of the serine/threonine protein kinase family, is known to phosphorylate a broad range of substrates. However, its role in the development of chronic liver diseases remains elusive. This study aimed to investigate the role of CK1ε in the development and progression of metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific CK1ε knockout (CK1εΔHEP) mice were generated by crossbreeding mice with floxed CK1ε alleles (CK1εfl/fl) and Cre-expressing albumin mice. Mice were fed either a Western diet (WD) or a methionine- and choline-deficient diet to induce MASH. CK1εΔHEP was associated with a decreased severity of WD- or methionine- and choline-deficient diet-induced MASH, as confirmed by reduced incidence of hepatic lesions and significantly lower levels of alanine aminotransferase, aspartate aminotransferase, and proinflammatory cytokine tumor necrosis factor (TNF)-α. CK1εΔHEP WD-fed mice exhibited significant amelioration of total cholesterol, triglycerides, and de novo lipogenic genes, indicating that CK1ε could influence lipid metabolism. CK1εΔHEP WD-fed mice showed significantly down-regulated TNF receptor-associated factor 3, phosphorylated (p) transforming growth factor-ß-activated kinase 1, p-TANK-binding kinase 1, and p-AKT levels, thereby affecting downstream mitogen-activated protein kinase signaling, indicating a potential mechanism for the observed rescue. Finally, pharmacologic inhibition of CK1ε with PF670462 improved palmitic acid-induced steatohepatitis in vitro and attenuated WD-induced metabolic profile in vivo. In conclusion, CK1ε up-regulates TNF receptor-associated factor 3, which, in turn, causes transforming growth factor-ß-activated kinase 1-dependent signaling, amplifies downstream mitogen-activated protein kinase signaling, modifies p-c-Jun levels, and exacerbates inflammation, all of which are factors in WD-induced metabolic dysfunction-associated steatotic liver disease.

4.
Metabolites ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786742

RESUMO

This study evaluated the differences in the metabolite profile of three n-3 FA fish oil formulations in 12 healthy participants: (1) standard softgels (STD) providing 600 mg n-3 FA; (2) enteric-coated softgels (ENT) providing 600 mg n-3 FA; (3) a new micellar formulation (LMF) providing 374 mg n-3 FA. The pharmacokinetics (PKs), such as the area under the plot of plasma concentration (AUC), and the peak blood concentration (Cmax) of the different FA metabolites including HDHAs, HETEs, HEPEs, RvD1, RvD5, RvE1, and RvE2, were determined over a total period of 24 h. Blood concentrations of EPA (26,920.0 ± 10,021.0 ng/mL·h) were significantly higher with respect to AUC0-24 following LMF treatment vs STD and ENT; when measured incrementally, blood concentrations of total n-3 FAs (EPA/DHA/DPA3) up to 11 times higher were observed for LMF vs STD (iAUC 0-24: 16,150.0 ± 5454.0 vs 1498.9 ± 443.0; p ≤ 0.0001). Significant differences in n-3 metabolites including oxylipins were found between STD and LMF with respect to 12-HEPE, 9-HEPE, 12-HETE, and RvD1; 9-HEPE levels were significantly higher following the STD vs. ENT treatment. Furthermore, within the scope of this study, changes in blood lipid levels (i.e., cholesterol, triglycerides, LDL, and HDL) were monitored in participants for up to 120 h post-treatment; a significant decrease in serum triglycerides was detected in participants (~20%) following the LMF treatment; no significant deviations from the baseline were detected for all the other lipid biomarkers in any of the treatment groups. Despite a lower administered dose, LMF provided higher blood concentrations of n-3 FAs and certain anti-inflammatory n-3 metabolites in human participants-potentially leading to better health outcomes.

5.
Life Sci ; 342: 122534, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408637

RESUMO

AIMS: Sphingolipids are involved in the regulation of insulin signaling, which is linked to the development of insulin resistance, leading to diabetes mellitus. We aimed to study whether modulation of sphingolipid levels by GT-11 may regulate insulin signaling in C2C12 myotubes. MAIN METHODS: We investigated the effects of sphingolipid metabolism on Akt phosphorylation and glucose uptake using C2C12 myotubes. Either GT-11, an inhibitor of dihydroceramide desaturase 1 and S1P lyase, or siRNA targeting Sgpl1, the gene encoding the enzyme, was employed to determine the effect of sphingolipid metabolism modulation on insulin signaling. Western blotting and glucose uptake assays were used to evaluate the effect of treatments on insulin signaling. Sphingolipid metabolites were analyzed by high performance liquid chromatography (HPLC). KEY FINDINGS: Treatment with GT-11 resulted in decreased Akt phosphorylation and reduced glucose uptake. Silencing the Sgpl1 gene, which encodes S1P lyase, mimicked these findings, suggesting the potential for regulating insulin signaling through S1P lyase modulation. GT-11 modulated sphingolipid metabolism, inducing the accumulation of sphingolipids. Using PF-543 and ARN14974 to inhibit sphingosine kinases and acid ceramidase, respectively, we identified a significant interplay between sphingosine, S1P lyase, and insulin signaling. Treatment with either exogenous sphingosine or palmitic acid inhibited Akt phosphorylation, and reduced S1P lyase activity. SIGNIFICANCE: Our findings highlight the importance of close relationship between sphingolipid metabolism and insulin signaling in C2C12 myotubes, pointing to its potential therapeutic relevance for diabetes mellitus.


Assuntos
Diabetes Mellitus , Liases , Humanos , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingosina/metabolismo , Esfingolipídeos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Glucose/metabolismo , Liases/metabolismo , Liases/farmacologia , Diabetes Mellitus/metabolismo , Lisofosfolipídeos/metabolismo
6.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005205

RESUMO

Zaluzanin C (ZC), a sesquiterpene lactone isolated from Laurus nobilis L., has been reported to have anti-inflammatory and antioxidant effects. However, the mechanistic role of ZC in its protective effects in Kupffer cells and hepatocytes has not been elucidated. The purpose of this study was to elucidate the efficacy and mechanism of action of ZC in Kupffer cells and hepatocytes. ZC inhibited LPS-induced mitochondrial ROS (mtROS) production and subsequent mtROS-mediated NF-κB activity in Kupffer cells (KCs). ZC reduced mRNA levels of pro-inflammatory cytokines (Il1b and Tnfa) and chemokines (Ccl2, Ccl3, Ccl4, Cxcl2 and Cxcl9). Tumor necrosis factor (TNF)-α-induced hepatocyte mtROS production was inhibited by ZC. ZC was effective in alleviating mtROS-mediated mitochondrial dysfunction. ZC enhanced mitophagy and increased mRNA levels of fatty acid oxidation genes (Pparα, Cpt1, Acadm and Hadha) and mitochondrial biosynthetic factors (Pgc1α, Tfam, Nrf1 and Nrf2) in hepatocytes. ZC has proven its anti-lipid effect by improving lipid accumulation in hepatocytes by enhancing mitochondrial function to facilitate lipid metabolism. Therefore, our study suggests that ZC may be an effective compound for hepatoprotection by suppressing inflammation and lipid accumulation through regulating mtROS.


Assuntos
Hepatócitos , Células de Kupffer , Humanos , Células de Kupffer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Lipídeos/farmacologia , Fígado , Metabolismo dos Lipídeos
7.
Int Immunopharmacol ; 125(Pt A): 111124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977740

RESUMO

Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.


Assuntos
Sepse , Transdução de Sinais , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Fenol/metabolismo , Fenol/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Fígado/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo
8.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838711

RESUMO

Psoriasis, a chronic inflammation-mediated skin disease, affects 2-3% of the global population. It is characterized by keratinocyte hyperproliferation and immune cell infiltration. The JAK/STAT3 and JAK/STAT1 signaling pathways play an important role in the development of psoriasis when triggered by IL-6 and IFN-γ, which are produced by dendritic cells and T-lymphocytes. Thus, blocking JAK/STAT signaling may be a potential strategy for treating psoriasis. Therefore, we examined the effects of CMX, an extract of Centipeda minima enriched in Brevilin A, Arnicolide D, Arnicolide C, and Microhelenin C, on macrophages and keratinocytes. We established an in vitro model of psoriasis, based on an inflammation-associated keratinocyte proliferation model, and used macrophages and keratinocytes treated with LPS, IL-6, or IFN-γ to evaluate the effect of CMX. We found that CMX reduced pro-inflammatory cytokine production, by inhibiting lipopolysaccharide (LPS)-induced JAK1/2 and STAT1/3 phosphorylation in macrophages. Moreover, CMX-downregulated chemokine expression and cell proliferation compared with components in HaCaT cells, induced by rh-IL-6 and rh-IFN-γ, respectively. Consistently, we demonstrated that the reduction in chemokine expression and hyperproliferation was mediated by the regulation of IFN-γ-activated JAK/STAT1 and IL-6-activated JAK/STAT3 signaling. In conclusion, CMX inhibited JAK/STAT-mediated inflammatory responses and cell proliferation in macrophages and keratinocytes. Consequently, CMX may have potential uses as a therapeutic agent for treating psoriasis.


Assuntos
Interleucina-6 , Psoríase , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Queratinócitos , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Proliferação de Células , Quimiocinas/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499214

RESUMO

Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Mitocôndrias/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Transdução de Sinais , Neoplasias Colorretais/metabolismo
10.
Biomed Pharmacother ; 155: 113688, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150308

RESUMO

The liver is exposed to gut-derived bacterial endotoxin via portal circulation, and recognizes it through toll-like receptor 4 (TLR4). Endotoxin lipopolysaccharide (LPS) stimulates the self-ubiquitination of ubiquitin ligase TRAF6, which is linked to scaffold with protein kinase TAK1 for auto-phosphorylation and subsequent activation. TAK1 activity is a signal transducer in the activating pathways of transcription factors NF-κB and AP-1 for production of various cytokines. Here, we hypothesized that TRAF6-TAK1 axis would be implicated in endotoxin-induced liver disease. Following exposure to endotoxin LPS, TLR4-mediated phosphorylation of TAK1 and transcription of cell-death cytokine TNF-α were triggered in Kupffer cells but not in hepatocytes as well as TNF receptor-mediated and caspase-3-executed apoptosis was occurred in D-galactosamine (GalN)-sensitized hepatocytes under co-culture with Kupffer cells. Treatment with pyridinylmethylene benzothiophene (PMBT) improved endotoxin LPS-induced hepatocyte apoptosis in GalN-sensitized C57BL/6 mice via suppressing NF-κB- and AP-1-regulated expression of TNF-α in Kupffer cells, and rescued the mice from hepatic damage-associated bleeding and death. As a mechanism, PMBT directly inhibited Lys 63-linked ubiquitination of TRAF6, and mitigated scaffold assembly between TRAF6 and the TAK1-activator adaptors TAB1 and TAB2 complex in Kupffer cells. Thereby, PMBT interrupted TRAF6 ubiquitination-induced activation of TAK1 activity in the TLR4-mediated signal cascade leading to TNF-α production. However, PMBT did not directly affect the apoptotic activity of TNF-α on GalN-sensitized hepatocytes. Finally, we propose chemical inhibition of TRAF6-TAK1 axis in Kupffer cells as a strategy for treating liver disease due to gut-derived endotoxin or Gram-negative bacterial infection.


Assuntos
Hepatopatias , Fator 6 Associado a Receptor de TNF , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Endotoxinas/toxicidade , Galactosamina/toxicidade , Ligases/metabolismo , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinas/metabolismo
11.
Free Radic Biol Med ; 184: 42-52, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390453

RESUMO

Alcoholic liver disease is the major cause of chronic liver diseases. Excessive alcohol intake results in endoplasmic reticulum (ER) stress. ERdj5, a member of DNAJ family, is an ER-resident chaperone protein, whose role in alcoholic liver disease remains to be investigated. In this study, we aim to address the effect of ERdj5 on alcoholic liver disease and the underlying mechanism. Hepatic Dnajc10 (ERdj5) mRNA expression was elevated in both human and mouse alcoholic hepatitis. In mice subjected to chronic and binge ethanol feeding, ERdj5 levels were also markedly increased. Hepatic Dnajc10 correlated with Xbp1s mRNA. Tunicamycin, an ER stress inducer, increased ERdj5 levels. Dnajc10 knockout mice exhibited exacerbated alcohol-induced liver injury and hepatic steatosis. However, the macrophage numbers and chemokine levels were similar to those in wild-type mice. Depletion of Dnajc10 promoted oxidative stress. Ethanol feeding increased hepatic H2O2 levels, and these were further increased in Dnajc10 knockout mice. Additionally, Dnajc10-deficient hepatocytes produced large amounts of reactive oxygen species. Notably, Nrf2, a central regulator of oxidative stress, was decreased by depletion of Dnajc10 in the nuclear fraction of ethanol-treated mouse liver. Consistently, liver tissues from ethanol-fed Dnajc10 knockout mice had reduced expression of downstream antioxidant genes. Furthermore, hepatic glutathione content in the liver of knockout mice declined compared to wild-type mice. In conclusion, our results demonstrate that ethanol-induced ERdj5 may regulate the Nrf2 pathway and glutathione contents, and have protective effects on liver damage and alcohol-mediated oxidative stress in mice. These suggest that ERdj5 has the potential to protect against alcoholic liver disease.


Assuntos
Proteínas de Choque Térmico HSP40 , Hepatopatias Alcoólicas , Chaperonas Moleculares , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Etanol/toxicidade , Glutationa/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo
12.
Molecules ; 25(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183436

RESUMO

Aucklandia lappa Decne., known as "Mok-hyang" in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saussurea/química , Animais , Antioxidantes/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
13.
Arch Pharm Res ; 42(11): 935-946, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31571145

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common cause of fatal liver diseases such as cirrhosis, liver cancer, and indications for orthotopic liver transplantation. Given its high prevalence, the absence of FDA-approved drugs for NAFLD is noticeable. In the pathogenesis of NAFLD, it is well known that mitochondrial dysfunction arises as a result of changes in ETC complexes and the membrane potential (Δψm), as well as decreased ATP synthesis. Due to their fundamental role in energy metabolism and cell death decision, alterations in mitochondria are considered to be critical factors causing NAFLD. Reduced levels of ß-oxidation, along with increased lipogenesis, result in lipid accumulation in hepatocytes, and the subsequent production of reactive oxygen species and hepatocyte injury, which contribute to hepatic inflammation and fibrosis through the activations of Kupffer cells and hepatic stellate cells. Here, we review the latest findings describing the involvement of mitochondrial processes in the development of NAFLD and discuss the potential targets against which therapeutics for this disease can be developed.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Comunicação Celular/imunologia , Morte Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , PPAR gama/agonistas , PPAR gama/metabolismo , Prevalência , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
14.
J Biol Chem ; 294(33): 12359-12369, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31235522

RESUMO

Excessive alcohol consumption induces intestinal dysbiosis of the gut microbiome and reduces gut epithelial integrity. This often leads to portal circulation-mediated translocation of gut-derived microbial products, such as lipopolysaccharide (LPS), to the liver, where these products engage Toll-like receptor 4 (TLR4) and initiate hepatic inflammation, which promotes alcoholic liver disease (ALD). Although the key self-destructive process of autophagy has been well-studied in hepatocytes, its role in macrophages during ALD pathogenesis remains elusive. Using WT and myeloid cell-specific autophagy-related 7 (Atg7) knockout (Atg7ΔMye) mice, we found that chronic ethanol feeding for 6 weeks plus LPS injection enhances serum alanine aminotransferase and IL-1ß levels and augments hepatic C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) expression in WT mice, a phenotype that was further exacerbated in Atg7ΔMye mice. Atg7ΔMye macrophages exhibited defective mitochondrial respiration and displayed elevated mitochondrial reactive oxygen species production and inflammasome activation relative to WT cells. Interestingly, compared with WT cells, Atg7ΔMye macrophages also had a drastically increased abundance and nuclear translocation of interferon regulatory factor 1 (IRF1) after LPS stimulation. Mechanistically, LPS induced co-localization of IRF1 with the autophagy adaptor p62 and the autophagosome, resulting in subsequent IRF1 degradation. However, upon p62 silencing or Atg7 deletion, IRF1 started to accumulate in autophagy-deficient macrophages and translocated into the nucleus, where it induced CCL5 and CXCL10 expression. In conclusion, macrophage autophagy protects against ALD by promoting IRF1 degradation and removal of damaged mitochondria, limiting macrophage activation and inflammation.


Assuntos
Morte Celular Autofágica , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Fator Regulador 1 de Interferon/metabolismo , Macrófagos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteólise , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Etanol/farmacologia , Fator Regulador 1 de Interferon/genética , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia
15.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189722

RESUMO

Hyaluronan (HA), a major extracellular matrix glycosaminoglycan, is a biomarker for cirrhosis. However, little is known about the regulatory and downstream mechanisms of HA overproduction in liver fibrosis. Hepatic HA and HA synthase 2 (HAS2) expression was elevated in both human and murine liver fibrosis. HA production and liver fibrosis were reduced in mice lacking HAS2 in hepatic stellate cells (HSCs), whereas mice overexpressing HAS2 had exacerbated liver fibrosis. HAS2 was transcriptionally up-regulated by transforming growth factor-ß through Wilms tumor 1 to promote fibrogenic, proliferative, and invasive properties of HSCs via CD44, Toll-like receptor 4 (TLR4), and newly identified downstream effector Notch1. Inhibition of HA synthesis by 4-methylumbelliferone reduced HSC activation and liver fibrosis in mice. Our study provides evidence that HAS2 actively synthesizes HA in HSCs and that it promotes HSC activation and liver fibrosis through Notch1. Targeted HA inhibition may have potential to be an effective therapy for liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Cirrose Hepática/metabolismo , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Himecromona/farmacologia , RNA-Seq , Receptor 4 Toll-Like/metabolismo
16.
Theranostics ; 8(16): 4409-4428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214629

RESUMO

Rationale: Chitinase 3-like 1 (Chi3L1) protein is up-regulated in various diseases including solid cancers. According to Genome-Wide Association Study (GWAS)/Online Mendelian Inheritance in Man (OMIM)/Differentially Expressed Gene (DEG) analyses, Chi3L1 is associated with 38 cancers, and more highly associated with cancer compared to other oncogenes such as EGFR, TNFα, etc. However, the mechanisms and pathways by which Chi3L1 is associated with cancer are not clear. In current study, we investigated the role of Chi3L1 in lung metastasis. Methods: We performed the differentially expressed gene analysis to explore the genes which are associated with Chi3L1 using the web-based platform from Biomart. We investigated the metastases in lung tissues of C57BL/6 mice injected with B16F10 melanoma following treatment with Ad-shChi3L1. We also investigated the expression of USF1 and Chi3L1 in Chi3L1 KD mice lung tissues by Western blotting and IHC. We also analyzed lung cancer cells metastases induced by Chi3L1 using migration and cell proliferation assay in human lung cancer cell lines. The involvement of miR-125a-3p in Chi3L1 regulation was determined by miRNA qPCR and luciferase reporter assay. Results: We showed that melanoma metastasis in lung tissues was significantly reduced in Chi3L1 knock-down mice, accompanied by down-regulation of MMP-9, MMP-13, VEGF, and PCNA in Chi3L1 knock-down mice lung tissue, as well as in human lung cancer cell lines. We also found that USF1 was conversely expressed against Chi3L1. USF1 was increased by knock-down of Chi3L1 in mice lung tissues, as well as in human lung cancer cell lines. In addition, knock-down of USF1 increased Chi3L1 levels in addition to augmenting metastasis cell migration and proliferation in mice model, as well as in human cancer cell lines. Moreover, in human lung tumor tissues, the expression of Chi3L1 was increased but USF1 was decreased in a stage-dependent manner. Finally, Chi3L1 expression was strongly regulated by the indirect translational suppressing activity of USF1 through induction of miR-125a-3p, a target of Chi3L1. Conclusion: Metastases in mice lung tissues and human lung cancer cell lines were decreased by KD of Chi3L1. USF1 bound to the Chi3L1 promoter, however, Chi3L1 expression was decreased by USF1, despite USF1 enhancing the transcriptional activity of Chi3L1. We found that USF1 induced miR-125a-3p levels which suppressed Chi3L1 expression. Ultimately, our results suggest that lung metastasis is suppressed by knock-down of Chi3L1 through miR-125a-3p-mediated up-regulation of USF1.


Assuntos
Proteína 1 Semelhante à Quitinase-3/antagonistas & inibidores , Expressão Gênica , Neoplasias Pulmonares/secundário , Melanoma/patologia , MicroRNAs/biossíntese , Regulação para Cima , Fatores Estimuladores Upstream/biossíntese , Adenoviridae/genética , Adenoviridae/crescimento & desenvolvimento , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/prevenção & controle , Camundongos Endogâmicos C57BL , Transdução Genética
17.
Am J Pathol ; 188(11): 2574-2588, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125542

RESUMO

Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/ß receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/ß receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.


Assuntos
Células Dendríticas/imunologia , Células de Kupffer/imunologia , Glicoproteínas de Membrana/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Linfócitos T Reguladores/imunologia , Receptor 7 Toll-Like/fisiologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Interferon Tipo I/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/metabolismo
18.
J Vet Sci ; 19(5): 693-698, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30041291

RESUMO

Arthroscopy has become an attractive modality in the diagnosis and treatment of joint diseases in toy breed dogs. However, the application of arthroscopy is limited by small joint space. Our objective was to evaluate the efficacy of a stifle lever for joint distraction during stifle arthroscopy in toy breed dogs. Paired stifles (n = 32 each) collected from 16 cadavers of toy breed dogs were randomly assigned to one of two groups: the stifle lever group or the external manipulation group. All stifles underwent arthroscopic cranial cruciate ligament transection, and the visualization of the medial meniscus was evaluated. Medial meniscal release (MMR) was then performed. Following arthroscopic examination, the success rates of MMR and damages of tibial and femoral cartilages were evaluated. Visualization of the medial meniscus was significantly better, and meniscal probing was significantly easier, in the stifle lever group than in the external manipulation group (p = 0.001). There were no significant differences between groups for MMR success or articular cartilage damage. Using the stifle lever on arthroscopic examination improved visualization and probing on the medial meniscus in toy breed dogs. The stifle lever can be used as a good modality in assessing medial meniscal pathology in toy breed dogs.


Assuntos
Lesões do Ligamento Cruzado Anterior/veterinária , Ligamento Cruzado Anterior/diagnóstico por imagem , Artroscopia/veterinária , Meniscos Tibiais/diagnóstico por imagem , Animais , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Artroscopia/métodos , Cadáver , Cães/genética , Joelho de Quadrúpedes
19.
Int J Cancer ; 142(1): 81-91, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875549

RESUMO

Hepatocyte death is associated with liver inflammation, fibrosis and hepatocellular carcinoma (HCC). Damaged cells trigger inflammation through activation of Toll-like receptors (TLRs). Although the role of TLR4 in HCC development has been reported, the role of TLR9 in the development of HCC remains elusive. To investigate the role of TLR4 and TLR9 signaling in liver inflammation-fibrosis-cancer axis, we took advantage of mice with hepatic deletion of transforming growth factor-ß-activated kinase 1 (Tak1ΔHep) that develop spontaneous liver injury, inflammation, fibrosis, and HCC, recapitulating the pathology of human HCC. We generated double knockout mice lacking genes of our interest with hepatic Tak1. Tak1ΔHep mice and Tlr4-deficient Tak1ΔHep mice had similar serum ALT levels, but Tlr4-deficient Tak1ΔHep mice exhibited significantly reduced macrophage infiltration, myofibroblast activation and tumor formation. Ablation of TLR9 reduced spontaneous liver injury, inflammation, fibrosis, and cancer development in Tak1ΔHep mice. In addition, the common adaptor, myeloid differentiation factor 88 (MyD88)-deficient Tak1ΔHep mice also attenuated liver injury, macrophage recruitment, collagen deposition, and tumor growth compared with control Tak1ΔHep mice. Genetic ablation of TNF receptor type I (TNFR) in Tak1ΔHep mice remarkably reduced liver inflammation-fibrosis-cancer axis. Surprisingly, disruption of interleukin-1 receptor (IL-1R) had no effect on liver injury and tumor formation, although Il1r-deficient Tak1ΔHep showed attenuated macrophage infiltration and collagen deposition. In conclusion, TLR4- and TLR9-MyD88 are driving forces of progression to HCC accompanied by liver inflammation and fibrosis in Tak1ΔHep mice. Importantly, TLR4 and TLR9 downstream TNFR, but not IL-1R signaling is crucial for the development of HCC in Tak1ΔHep mice.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
20.
J Immunotoxicol ; 14(1): 125-136, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28641471

RESUMO

Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by Fusarium species. The toxicity of ZEA has been evaluated for reproductive and developmental effects; however, there is little evidence about its acute toxicity or general immunotoxicity. In the present study, immune regulatory functions were investigated in mice that had been exposed to ZEA (5 or 20 mg/kg BW) daily for 14 days. Results showed that sub-populations of CD4+, CD8+ and CD11c+ cells in the spleen and CD4+, CD8+ and F4/80+ cells in the mesenteric lymph nodes (MLN) of ZEA (20 mg/kg)-exposed hosts were decreased compared to those in the control mice. However, CD19+ and CD11c+ cells were increased in the MLN of the ZEA mice and CD4+CD25+Foxp3+ cells were decreased in the spleen and MLN. There were differential changes in the immune cell populations of the small intestine of the ZEA mice as well, depending on small intestine location. In ex vivo experiments, ZEA treatments resulted in increased proliferative capacities of mitogen-induced splenocytes and MLN cells; such changes were paralleled by significant increases in interferon (IFN)-γ production. With regard to serum isotypes, IgM levels were decreased and IgE levels were increased in the 20 mg/kg ZEA-treated mice. Mucosal IgA levels were decreased in the duodenum and vagina of these hosts. Serum analyzes also revealed that tumor necrosis factor (TNF)-α levels were decreased and interleukin (IL)-6 levels increased as a result of ZEA exposures. ZEA treatment also led to increased apoptosis in the spleen and Peyer's patches; these changes were associated with changes in the ratios of Bax:Bcl-2. Following priming with different TLR ligands, ZEA exposure led to differentially modulated TLR signaling and variable production of pro- and anti-inflammatory cytokines in RAW 264.7 macrophage cells. Taken together, these results indicated that ZEA could alter the normal expression/function of different immune system components and this would likely lead to immunomodulation in situ.


Assuntos
Estrogênios não Esteroides/administração & dosagem , Linfonodos/efeitos dos fármacos , Linfócitos/fisiologia , Macrófagos/fisiologia , Micotoxinas/administração & dosagem , Baço/efeitos dos fármacos , Zearalenona/administração & dosagem , Animais , Apoptose , Proliferação de Células , Citocinas/metabolismo , Estrogênios não Esteroides/efeitos adversos , Feminino , Imunoglobulina E/sangue , Imunoglobulina M/sangue , Imunomodulação , Linfonodos/imunologia , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Micotoxinas/efeitos adversos , Células RAW 264.7 , Baço/imunologia , Zearalenona/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA