Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592684

RESUMO

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Assuntos
Ferritinas , Humanos , Ferritinas/química , Ferritinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sistemas de Liberação de Medicamentos
2.
J Pharm Sci ; 110(6): 2362-2371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33652014

RESUMO

Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.


Assuntos
Amiloide , Peptídeos , Dissulfetos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos
3.
Cell ; 184(5): 1232-1244.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626330

RESUMO

Human cytomegalovirus (HCMV) infects the majority of the human population and represents the leading viral cause of congenital birth defects. HCMV utilizes the glycoproteins gHgLgO (Trimer) to bind to platelet-derived growth factor receptor alpha (PDGFRα) and transforming growth factor beta receptor 3 (TGFßR3) to gain entry into multiple cell types. This complex is targeted by potent neutralizing antibodies and represents an important candidate for therapeutics against HCMV. Here, we determine three cryogenic electron microscopy (cryo-EM) structures of the trimer and the details of its interactions with four binding partners: the receptor proteins PDGFRα and TGFßR3 as well as two broadly neutralizing antibodies. Trimer binding to PDGFRα and TGFßR3 is mutually exclusive, suggesting that they function as independent entry receptors. In addition, Trimer-PDGFRα interaction has an inhibitory effect on PDGFRα signaling. Our results provide a framework for understanding HCMV receptor engagement, neutralization, and the development of anti-viral strategies against HCMV.


Assuntos
Citomegalovirus/química , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Microscopia Crioeletrônica , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
Neuron ; 109(2): 273-284.e4, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33152265

RESUMO

The TRPA1 ion channel is activated by electrophilic compounds through the covalent modification of intracellular cysteine residues. How non-covalent agonists activate the channel and whether covalent and non-covalent agonists elicit the same physiological responses are not understood. Here, we report the discovery of a non-covalent agonist, GNE551, and determine a cryo-EM structure of the TRPA1-GNE551 complex, revealing a distinct binding pocket and ligand-interaction mechanism. Unlike the covalent agonist allyl isothiocyanate, which elicits channel desensitization, tachyphylaxis, and transient pain, GNE551 activates TRPA1 into a distinct conducting state without desensitization and induces persistent pain. Furthermore, GNE551-evoked pain is relatively insensitive to antagonist treatment. Thus, we demonstrate the biased agonism of TRPA1, a finding that has important implications for the discovery of effective drugs tailored to different disease etiologies.


Assuntos
Medição da Dor/métodos , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Medição da Dor/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Canal de Cátion TRPA1/química
5.
Science ; 367(6483): 1224-1230, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32079680

RESUMO

Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.


Assuntos
Antígenos CD20/química , Rituximab/química , Antígenos CD20/imunologia , Proteínas do Sistema Complemento/imunologia , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Conformação Proteica , Multimerização Proteica , Rituximab/imunologia
6.
Nat Commun ; 10(1): 3070, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296852

RESUMO

CARD9 and CARD11 drive immune cell activation by nucleating Bcl10 polymerization, but are held in an autoinhibited state prior to stimulation. Here, we elucidate the structural basis for this autoinhibition by determining the structure of a region of CARD9 that includes an extensive interface between its caspase recruitment domain (CARD) and coiled-coil domain. We demonstrate, for both CARD9 and CARD11, that disruption of this interface leads to hyperactivation in cells and to the formation of Bcl10-templating filaments in vitro, illuminating the mechanism of action of numerous oncogenic mutations of CARD11. These structural insights enable us to characterize two similar, yet distinct, mechanisms by which autoinhibition is relieved in the course of canonical CARD9 or CARD11 activation. We also dissect the molecular determinants of helical template assembly by solving the structure of the CARD9 filament. Taken together, these findings delineate the structural mechanisms of inhibition and activation within this protein family.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/ultraestrutura , Guanilato Ciclase/ultraestrutura , Domínios Proteicos , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Microscopia Crioeletrônica , Guanilato Ciclase/genética , Guanilato Ciclase/imunologia , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Multimerização Proteica/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/imunologia
7.
Science ; 363(6433)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30733386

RESUMO

Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Baratas , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Domínios Proteicos , Proteínas Recombinantes de Fusão/química
8.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661758

RESUMO

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/ultraestrutura , Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico , Peptídeos/toxicidade , Domínios Proteicos , Venenos de Aranha/toxicidade , Aranhas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo
9.
J Biol Chem ; 293(43): 16803-16817, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206119

RESUMO

The caspase recruitment domain-containing protein 9 (CARD9)-B-cell lymphoma/leukemia 10 (Bcl10) signaling axis is activated in myeloid cells during the innate immune response to a variety of diverse pathogens. This signaling pathway requires a critical caspase recruitment domain (CARD)-CARD interaction between CARD9 and Bcl10 that promotes downstream activation of factors, including NF-κB and the mitogen-activated protein kinase (MAPK) p38. Despite these insights, CARD9 remains structurally uncharacterized, and little mechanistic understanding of its regulation exists. We unexpectedly found here that the CARD in CARD9 binds to Zn2+ with picomolar affinity-a concentration comparable with the levels of readily accessible Zn2+ in the cytosol. NMR solution structures of the CARD9-CARD in the apo and Zn2+-bound states revealed that Zn2+ has little effect on the ground-state structure of the CARD; yet the stability of the domain increased considerably upon Zn2+ binding, with a concomitant reduction in conformational flexibility. Moreover, Zn2+ binding inhibited polymerization of the CARD9-CARD into helical assemblies. Here, we also present a 20-Å resolution negative-stain EM (NS-EM) structure of these filamentous assemblies and show that they adopt a similar helical symmetry as reported previously for filaments of the Bcl10 CARD. Using both bulk assays and direct NS-EM visualization, we further show that the CARD9-CARD assemblies can directly template and thereby nucleate Bcl10 polymerization, a capacity considered critical to propagation of the CARD9-Bcl10 signaling cascade. Our findings indicate that CARD9 is a potential target of Zn2+-mediated signaling that affects Bcl10 polymerization in innate immune responses.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Zinco/metabolismo , Proteína 10 de Linfoma CCL de Células B/química , Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/genética , Cristalografia por Raios X , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Polimerização , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Zinco/química , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Nature ; 539(7627): 118-122, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27776355

RESUMO

Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V1 region drives proton translocation through the membrane-embedded VO region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V1 and VO regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Šresolution electron cryomicroscopy map of the VO complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac8c'c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.


Assuntos
Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Arginina/química , Arginina/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Hidrólise , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Rotação , Saccharomyces cerevisiae/química
11.
Elife ; 4: e10180, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439008

RESUMO

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.


Assuntos
Microscopia Crioeletrônica , ATPases Mitocondriais Próton-Translocadoras/química , Animais , Bovinos , Biologia Computacional , Imageamento Tridimensional , ATPases Mitocondriais Próton-Translocadoras/genética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
12.
Proc Natl Acad Sci U S A ; 112(38): 11858-63, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351699

RESUMO

Alzheimer's disease (AD) is a fatal neurodegenerative disorder in humans and the main cause of dementia in aging societies. The disease is characterized by the aberrant formation of ß-amyloid (Aß) peptide oligomers and fibrils. These structures may damage the brain and give rise to cerebral amyloid angiopathy, neuronal dysfunction, and cellular toxicity. Although the connection between AD and Aß fibrillation is extensively documented, much is still unknown about the formation of these Aß aggregates and their structures at the molecular level. Here, we combined electron cryomicroscopy, 3D reconstruction, and integrative structural modeling methods to determine the molecular architecture of a fibril formed by Aß(1-42), a particularly pathogenic variant of Aß peptide. Our model reveals that the individual layers of the Aß fibril are formed by peptide dimers with face-to-face packing. The two peptides forming the dimer possess identical tilde-shaped conformations and interact with each other by packing of their hydrophobic C-terminal ß-strands. The peptide C termini are located close to the main fibril axis, where they produce a hydrophobic core and are surrounded by the structurally more flexible and charged segments of the peptide N termini. The observed molecular architecture is compatible with the general chemical properties of Aß peptide and provides a structural basis for various biological observations that illuminate the molecular underpinnings of AD. Moreover, the structure provides direct evidence for a steric zipper within a fibril formed by full-length Aß peptide.


Assuntos
Peptídeos beta-Amiloides/ultraestrutura , Amiloide/ultraestrutura , Microscopia Crioeletrônica , Fragmentos de Peptídeos/ultraestrutura , Peptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Amiloide/química , Peptídeos beta-Amiloides/química , Mapeamento de Epitopos , Processamento de Imagem Assistida por Computador , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína
13.
J Struct Biol ; 186(2): 234-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657230

RESUMO

The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent "single particles", yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case of thin and flexible filaments, such as some amyloid-ß (Aß) fibrils, the single-particle approach may fail because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbitrarily short filament segments during alignment to approximate even high curvatures. All segments in a filament are aligned simultaneously with constraints that ensure that they connect to each other in space to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against datasets of Aß(1-40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of Aß(1-40) fibrils, we match the previously-obtained resolution but we are also able to obtain reliable alignments and ∼8-Å reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament deformations in three dimensions and enables a critical evaluation of the worm-like chain model for biological filaments.


Assuntos
Algoritmos , Microscopia Eletrônica/métodos , Proteínas/ultraestrutura , Software , Peptídeos beta-Amiloides/química , Vírus do Mosaico do Tabaco/química
14.
Handb Exp Pharmacol ; (184): 171-206, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18064415

RESUMO

alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.


Assuntos
Neurotransmissores/metabolismo , Receptores de Droga/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Venenos de Aranha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA